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Abstract. Finding good solutions to the number partitioning problem (NPP) – that is, finding a partition of
a set of 𝑁  numbers to minimize the discrepancy between the sums of the two subsets – is a well-studied
optimization problem, with applications to statistics, physics, and computer science. Along with having
numerous practical applications in the design of randomized control trials and processor scheduling, the
NPP is famous for possessing a statistical-to-computational gap: assuming the 𝑁  numbers to be partitioned
are i.i.d. standard Normal random variables, the optimal discrepancy is 2−Θ(𝑁) with high probability, but the
best polynomial-time algorithms only find solutions with a discrepancy of 2−Θ(log2 𝑁). This gap is a common
feature in optimization problems over random combinatorial structures, and indicates the need for a theory
of computational complexity beyond worst-case analysis.

In this thesis, we prove a strong form of algorithmic hardness for the number partitioning problem,
aiming to establish that this statistical-to-computational gap is an intrinsic feature of the NPP. We study
low degree algorithms, as they provide both tunable stability behavior and are tractable models for a broad
class of algorithms, under the widely successful low degree heuristic. Then, we establish a brittleness property
on the geometry of the solution set, which ensures that stable algorithms are unable to efficiently traverse
this random landscape. By combining these notions, we are able to show strong low degree hardness, in that
low degree algorithms will fail to find good solutions with high probability. In addition, while we show that
low degree polynomial algorithms are structurally ill-suited to the NPP, our results for the more general
class of low coordinate degree algorithms demonstrate a sharp tradeoff between algorithmic runtime (vis-à-vis
algorithmic complexity) and solution discrepancy, which our analysis suggests is optimal.

Finally, we establish a repulsion property, giving a precise tradeoff between the discrepancy of a solution
to a fixed instance and its distance to other solutions. We then leverage this to show that any algorithm
fed through a truly randomized rounding scheme will fail to find solutions with high probability. This
work demonstrates the effectiveness of using landscape properties to address questions about algorithmic
hardness, and suggests interesting directions for future study.

¹Written under the joint supervision of Professor Mark Sellke and Professor Subhabrata Sen.
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1 Introduction

Suppose that we have 𝑁  items, each with associated weights. How should we divide these items
into two groups so that the sum of their weights is as close as possible? Or, is it possible to divide
these items into two groups such that the absolute difference of the sums of their weights is below
a certain threshold? This question is known as the number partitioning problem (NPP), and has been
a subject of fascination in statistics, physics, and computer science since its proposal in 1969 [41].

Formally, let 𝑔1, …, 𝑔𝑁  be 𝑁  real numbers. The NPP is the problem of finding the subset 𝐴 of [𝑁] ≔
{1, 2, …, 𝑁} which minimizes the discrepancy

|∑
𝑖∈𝐴

𝑔𝑖 − ∑
𝑖∉𝐴

𝑔𝑖|.

Alternatively, identify the instance 𝑔1, …, 𝑔𝑁  with a point 𝑔 ∈ 𝐑𝑁 . Then, choosing a subset 𝐴 ⊆ [𝑁]
is equivalent to choosing a point 𝑥 in the 𝑁-dimensional binary hypercube Σ𝑁 ≔ {±1}𝑁 , where
𝑥𝑖 = +1 is the same as including 𝑖 ∈ 𝐴. The discrepancy of 𝑥 is now |⟨𝑔, 𝑥⟩|, and solving the NPP
means finding the 𝑥 minimizing this discrepancy:

min
𝑥∈Σ𝑁

|⟨𝑔, 𝑥⟩|. (1.1)

Rephrased as a decision problem – whether there exists a subset 𝐴 ⊆ [𝑁] (or a point 𝑥 ∈ Σ𝑁 ) such
that the discrepancy is zero, or sufficiently small – the NPP is NP-complete; this can be shown by
reduction from the subset sum problem. In fact, the NPP is one of the six basic NP-complete
problems of Garey and Johnson, and of those, the only one involving numbers [35, § 3.1].

Finding “good” solutions to this problem has a number of practical applications. For instance,
the NPP and MWNPP² were first formulated by Graham, who considered it in the context of multi-
processor scheduling: dividing a group of tasks with known runtimes across a pool of processors
so as to minimize one core being overworked while others stall [41]. Later work by Coffman, Garey,
and Johnson, as well as Tsai, looked at utilizing algorithms for the NPP for designing multiprocessor
schedulers or large integrated circuits [23], [94]. Coffman and Lueker also write on how the NPP can
be applied as a framework for allocating material stocks, such as steel coils in factories, paintings in
museums, or advertisements in newspapers [25].

One particularly important application of the NPP in statistics comes from the design of random-
ized controlled trials. Consider 𝑁  individuals, each with a set of covariate information 𝑔𝑖 ∈ 𝐑𝑑. Then
the problem is to divide them into a treatment group (denoted 𝐴+) and a control group (denoted
𝐴−), subject each to different conditions, and evaluate the responses. In order for such a trial to be

²That is, the multiway number partitioning problem (MWNPP), in which we want to partition 𝑔1, …, 𝑔𝑁  into 𝑀
subsets such that the within-subset sums are mutually close; what “mutually close” means precisely varies across
the literature.
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accurate, it is necessary to ensure that the covariates across both groups are roughly the same. In
our notation, this equates to finding an 𝐴+ (with 𝐴− ≔ [𝑁] ∖ 𝐴+) minimizing

min
𝐴+⊆[𝑁]

‖ ∑
𝑖∈𝐴+

𝑔𝑖 − ∑
𝑖∈𝐴−

𝑔𝑖‖

∞

. (1.2)

This extension of the NPP is often termed the vector balancing problem (VBP), and many algorithms
for solving the NPP/VBP come from designing such randomized controlled trials [59], [48].

On the other hand, in 1976, Merkle and Hellman devised one of the earliest public key cryptog-
raphy schemes, deriving its hardness from their belief that a variant of the NPP was computationally
difficult to solve – at the time, it was not yet known whether the NPP was NP-complete or not
[81]. Their proposal was for the receiver, say Alice, to generate as a public key 𝑁  natural numbers
(𝑎1, …, 𝑎𝑁), with 𝑁  typically around 100 and each 𝑎𝑖 around 200 bits long. To encrypt a 𝑁-bit
message 𝑥 = (𝑥1, …, 𝑥𝑁) ∈ {0, 1}𝑁 , the sender, say Bob, could compute

𝑏 ≔ ∑
𝑖∈𝑁

𝑎𝑖𝑥𝑖

and send the ciphertext 𝑏 to Alice. Any eavesdropper would know 𝑎1, …, 𝑎𝑁 , as well as 𝑏, and
decrypting the message involved finding a subset of the 𝑎𝑖 adding up to 𝑏. This is known as the
knapsack problem, which is NP-complete, as can be shown by restriction to the NPP [35, 3.2.1(6)].
However, such NP-completeness is only a worst-case hardness guarantee; Merkle and Hellman’s
scheme involved Alice choosing 𝑎1, …, 𝑎𝑁  by cryptographically scrambling a sequence (𝑎′

1, …, 𝑎′
𝑁)

for which solving the NPP was easy, enabling the receiver to practically decrypt the message 𝑥
from the ciphertext 𝑏. In 1984, Shamir – one of the developers of the RSA cryptosystem still in use
today – showed that one could exploit this public key generation process to reduce the “hard”
knapsack problem to one which was solvable in polynomial time, rendering the Merkle-Hellman
scheme insecure [91]. While today, Merkle-Hellman is but a footnote in the history of cryptography,
it demonstrates the importance of looking beyond worst-case hardness and expanding complexity
theory to describe the difficulty of the average problem instance.

Another major source of interest in the NPP, as well as potential explanations for when it is hard,
come from statistical physics. In the 1980s, Derrida introduced the eponymous random energy model
(REM), a simplified example of a spin glass in which, unlike the Sherrington-Kirkpatrick or other 𝑝
-spin glass models, the possible energy levels are independent of each other [28], [29], [14]. Despite
this simplicity, this model made possible heuristic analyses of the Parisi theory for mean field spin
glasses, and it was suspected that arbitrary random discrete systems would locally behave like the
REM [15], [62]. The NPP was the first system for which this local REM conjecture was shown [17],
[18]. In addition, in the case when the 𝑔𝑖 are independently chosen uniformly over {1, 2, …, 2𝑀},
Gent and Walsh conjectured that the hardness of finding perfect partitions (i.e., with discrepancy
zero if ∑𝑖 𝑔𝑖 is even, and one else) was controlled by the parameter 𝜅 ≔ 𝑚

𝑛  [44], [43]. Mertens soon
gave a nonrigorous statistical mechanics argument suggesting the existence of a phase transition
from 𝜅 < 1 to 𝜅 > 1; that is, while solutions exist in the low 𝜅 regime, they stop existing in the high
𝜅 regime [79]. It was also observed that this phase transition coincided with the empirical onset of
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computational hardness for typical algorithms, and Borgs, Chayes, and Pittel proved the existence
of this phase transition soon after [49], [13].

1.1 The Statistical-to-Computational Gap
Many problems involving searches over random combinatorial structures (i.e., throughout high-
dimensional statistics) exhibit a statistical-to-computational gap: the optimal values which are
known to exist via non-constructive, probabilistic methods are far better than those achievable
by state-of-the-art algorithms. In the pure optimization setting, examples such gaps are found in
random constraint satisfaction [83], [1], [69], finding maximal independent sets in sparse random
graphs [42], [22], the largest submatrix problem [40], [36], and the 𝑝-spin and diluted 𝑝-spin models
[34], [24]. These gaps also arise in various “planted” models, such as matrix or tensor PCA [20], [73],
[74], [55], [52], [3], high-dimensional linear regression [45], [46], or the infamously hard planted
clique problem [56], [31], [84], [10], [47]. These indicate that these problems are “hard” in a way that
goes beyond being NP; algorithms fail even on average-case instances.

The NPP is no exception: despite its apparent simplicity, its persistent importance in the random
optimization literature comes from the shocking width of its associated statistical-to-computa-
tional gap. On the statistical side, the landmark result here is by Karmarkar et al., who showed
that when the 𝑔𝑖 are i.i.d.random variables, with distribution sufficiently nice,³ then the minimum
discrepancy of (1.1) is Θ(

√
𝑁2−𝑁) with high probability as 𝑁 → ∞ [60]. Their result also extends to

even partitions, where the sizes of each subset is equal (i.e., for 𝑁  even), worsening only to Θ(𝑁2−𝑁).
Yet the best known algorithms cannot achieve discrepancies close to this in polynomial time.

A first approach to the NPP, often termed the greedy heuristic, would be to sort the 𝑁  inputs, place
the largest in one subset, and place the subsequent largest numbers in the subset with the smaller
total running sum. This takes 𝑂(𝑁 log 𝑁) time (due to the sorting step), but achieves a discrepancy
of 𝑂(𝑁−1), extremely far off from the statistical optimum [80]. More recently, Krieger et al. devel-
oped an algorithm achieving a discrepancy of 𝑂(𝑁−2), but in exchange for this poor performance,
their algorithm solves for a balanced partition, making it useful for randomized control trials [59].

The true breakthrough towards the statistical optimum came from Karmarkar and Karp, whose
algorithm produced a discrepancy of 𝑂(𝑁−𝛼 log 𝑁) = 2−𝑂(log2 𝑁) with high probability. Their algo-
rithm is rather complicated, involving randomization and a resampling step to make their analysis
tractable, but their main contribution is the differencing heuristic [63]. The idea is as follows: if 𝑆
is a list of items, then putting 𝑔, 𝑔′ ∈ 𝑆 in opposite partitions is the same as removing 𝑔 and 𝑔′

and adding |𝑔 − 𝑔′| back to 𝑆. Karmarkar and Karp propose two simpler algorithms based on this
heuristic, the partial differencing method (PDM) and largest differencing method (LDM), which they
conjectured could also achieve discrepancies of 𝑂(𝑁−𝛼 log 𝑁). In both, the items are first sorted, and
the differencing is performed on the pairs of the largest and second largest items. However, in PDM,
the remainders are ignored until all original numbers have been differenced, and then are resorted
and repartitioned, while LDM reinserts the remainder in sorted order at each step; in any case, both
algorithms are thus polynomial in 𝑁 . Lueker soon disproved the claim that PDM could achieve the
Karmarkar-Karp discrepancy, showing that when 𝑔𝑖 were i.i.d. Uniform on [0, 1], then the expected
discrepancy was Θ(𝑁−1), no better than the greedy algorithm [78]. However, for 𝑔𝑖 i.i.d. Uniform or

³Specifically, having bounded density and finite fourth moment.
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even Exponential, Yakir confirmed that LDM could achieve the performance of the original differ-
encing algorithm, proving that its expected discrepancy was 𝑁−Θ(log 𝑁) [99]. The constant 𝛼 was
later estimated for LDM to be 𝛼 = 1

2 ln 2 , via nonrigorous calculations [16].

Of course, at its most basic level, the NPP is a search problem over 2𝑁  possible partitions, so given
more and more time, an appropriate algorithm could keep improving its partition until it achieved
the global optimum. To this degree, Korf developed alternatives known as the complete greedy and
complete Karmarkar-Karp algorithms which, if run for exponentially long time, can find the globally
optimal partition [67], [68]. This algorithm was later extended to multiway number partitioning
[66]. See also Michiels et al. for extensions to balanced multiway partitioning [82].

For the multidimensional VBP case, Spencer showed in 1985 that the worse-case discrepancy of
the VBP was at most 6

√
𝑁  for 𝑑 = 𝑁  and ‖𝑔𝑖‖∞ ≤ 1 for all 1 ≤ 𝑖 ≤ 𝑁  [92]. However, his argument is

an application of the probabilistic method, and does not construct such a solution. In the average
case, Turner et al. proved that, under similar regularity assumptions on the 𝑔𝑖,³ the minimum
discrepancy is Θ(

√
𝑁2−𝑁/𝑑) for all 𝑑 ≤ 𝑜(𝑁), with high probability [93]. For the regime 𝛿 = Θ(𝑁),

Aubin et al. conjecture that there exists an explicit function 𝑐(𝛿) such that for 𝛿 > 0, the discrepancy
in the 𝑑 = 𝛿𝑁  regime is 𝑐(𝛿)

√
𝑁  with high probability [6]. To this end, Turner et al. also showed

that for 𝑑 ≤ 𝛿𝑁 , one can achieve 𝑂(
√

𝑁2−1/𝛿) with probability at least 99% [93]. On the algorith-
mic side, they generalized the Karmarkar-Karp algorithm to VBP, which, for 2 ≤ 𝑑 = 𝑂(

√
log 𝑁)

finds partitions with discrepancy 2−Θ(log2 𝑁/𝑑), reproducing the gap of classical Karmarkar-Karp.
On the other hand, in the superlinear regime 𝑑 ≥ 2𝑁 , this average-case discrepancy worsens to
𝑂(√𝑁 log(2𝑑/𝑁)) [27]. Yet, many proposed algorithms can achieve similar discrepancies, which
is believed to be optimal for 𝑑 ≥ 𝑁  [92], [9], [75], [86].

1.2 Algorithmic Hardness and Landscape Obstructions
Classical algorithmic complexity theory – involving classes such as P, NP, etc. – is poorly suited to
describing the hardness of random optimization problems, as these classes are based on the worst-
case performance of available algorithms. In many cases, the statistically possible performance of
solutions to random instances of these NP-complete problems will be far better than the worst-case
analysis would suggest. How then, can we extend complexity theory to describe problems which,
like the NPP, are hard on average? Along with the aforementioned statistical-to-computational
gaps, the past two decades of research have shown that many methods can provide evidence of this
average-case hardness, such as the failure of Markov chain algorithms [56], [39], [54], the failure of
approximate message passing (AMP) algorithms [100], [19], or lower bounding performance against
the sum-of-squares hierarchy or the statistical query model [55], [52], [87], [10], [61], [30], [32].

One particularly interesting approach is to prove average-case to worst-case reductions: if one
shows that a polynomial-time algorithm for solving random instances could be used to design a
polynomial-time algorithm for arbitrary instances, then assuming the problem was known to be in
NP, it can be concluded that no such polynomial-time algorithm for the average case can exist [33].
This method has been used to show hardness for sparse PCA, detecting planted independent sub-
graphs, and more by reducing to the random planted clique problem [20], [11], [12]. To this extent,
Hoberg et al. provided such evidence of hardness for the NPP by showing that a polynomial-time
approximation oracle achieving discrepancies around 𝑂(2

√
𝑁) could give polynomial-time approx-

imations for Minkowski’s problem, the latter of which is known to be hard [51]. More recently, Vafa
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and Vaikuntanathan showed that the Karmarkar-Karp algorithm’s performance was nearly tight,
assuming the worst-case hardness of the shortest vector problem on lattices [96]. Other conjectures
suggested that the onset of algorithmic hardness was related to phase transitions in the solution
landscapes, something which has been shown for random 𝑘-SAT, but this fails to describe hardness
for optimization problems.

A more recent and widely successful approach is based on analyzing the geometry of the solution
landscape. Many “hard” random optimization problems have a certain disconnectivity property,
known as the overlap gap property (OGP) [33]. Roughly, this means there exist 0 ≤ 𝜈1 < 𝜈2 such
that, for every two near-optimal states 𝑥, 𝑥′ for a particular instance 𝑔 of the problem either have
𝑑(𝑥, 𝑥′) < 𝜈1 or 𝑑(𝑥, 𝑥′) > 𝜈2. That is, pairs of solutions are either close to each other, or much
further away – the condition that 𝜈1 < 𝜈2 ensures that the “diameter” of solution clusters is much
smaller than the separation between these clusters.⁴ Beyond ruling out the existence of pairs of
near solutions with 𝑑(𝑥, 𝑥′) ∈ [𝜈1, 𝜈2], a common extension is the multioverlap OGP (𝑚-OGP): given
an ensemble of 𝑚 strongly correlated instances, there do not exist 𝑚-tuples of near solutions all
equidistant from each other. This extension is often useful to lower the “threshold” at which the
OGP starts to appear. Once established, the OGP and 𝑚-OGP, which is intrinsic to the problem, can
be used to rule out the success of wide classes of stable algorithms [7], [1], [83], [42], [37], [88], [97].

For the NPP, it was expected for decades that the “brittleness” of the solution landscape would
be a central barrier in finding successful algorithms to close the statistical-to-computational gap.
Mertens wrote in 2001 that any local heuristics, which only looked at fractions of the domain, would
fail to outperform random search [79, § 4.3]. This was backed up by the failure of many algorithms
based on locally refining Karmarkar-Karp-optimal solutions, such as simulated annealing [2], [90],
[57], [58], [4]. To that end, more recent approaches for algorithmic development are rooted in more
global heuristics [64], [26], [89], and some of the most interesting directions in algorithmic devel-
opment for the NPP comes from quantum computing: as this is outside our scope, we encourage the
interested reader to consult [8], [98]. The main result to this effect comes from Gamarnik and Kızıl-
dağ, who proved that for 𝑚 of constant order, the 𝑚-OGP for NPP held for discrepancies of 2−Θ(𝑁)

(i.e., the statistical optimum), but was absent for smaller discrepancies of 2−𝐸𝑁  with 𝜔(1) ≤ 𝐸𝑁 ≤
𝑜(𝑁) [39]. They do show, however, that the 𝑚-OGP in for 𝐸𝑁 ≥ 𝜔(

√
𝑁 log 𝑁) could be recovered

for 𝑚 superconstant. This allowed them to prove that for 𝜀 ∈ (0, 1/5), no stable algorithm (suitably
defined) could find solutions with discrepancy 2−𝐸𝑁  for 𝜔(𝑁 log−1

5+𝜀 𝑁) ≤ 𝐸𝑁 ≤ 𝑜(𝑁) [39, Thm.
3.2]. These results point to the efficacy of using landscape obstructions to show algorithmic hard-
ness for the NPP, which we will take advantage of in Section 3.

1.3 Our Results
In this thesis, we use a variant of the OGP, which we term a conditional landscape obstruction, to
prove low degree algorithmic hardness guarantees for the NPP at a range of discrepancy scales.
Our obstruction is based on the observation that given a solution to one instance of the NPP, it is
impossible to pin down the location of any solution to a strongly correlated instance, which prevents
suitably stable algorithms from traversing the solution landscape. This is the “brittleness” of the
NPP – even small changes in the instance drastically reshape the geometry of the solutions.

⁴This is called the “overlap” gap property because, in the literature, this is often described in terms of the inner
product of the solutions, as opposed to the distance between them.
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To start, let us formalize our terminology for the NPP.

Definition 1.1.  Let 𝑔 ∈ 𝐑𝑁  be an instance of the NPP, and let 𝑥 ∈ Σ𝑁 . The energy of 𝑥 is

𝐸(𝑥; 𝑔) ≔ − log2|⟨𝑔, 𝑥⟩|.

The solution set 𝑆(𝐸; 𝑔) is the set of all 𝑥 ∈ Σ𝑁  that have energy at least 𝐸, i.e., that satisfy

|⟨𝑔, 𝑥⟩| ≤ 2−𝐸.

Observe here that minimizing the discrepancy |⟨𝑔, 𝑥⟩| corresponds to maximizing the energy
𝐸(𝑥; 𝑔). This terminology is motivated by the statistical physics literature, wherein random opti-
mization problems are often reframed as energy maximization over a random landscape [79]. We
further know that the statistically optimal energy level is 𝐸 = Θ(𝑁), while the best computational
energy level (achievable in polynomial time) is 𝐸 = Θ(log2 𝑁).

For our purposes, an algorithm is a function 𝒜:  𝐑𝑁 → Σ𝑁  mapping instances 𝑔 to partitions
𝑥. We will discuss extensions to randomized algorithms (which can depend on a random seed 𝜔
independent of 𝑔) and to 𝐑𝑁 -valued algorithms (which can be forced to give outputs on Σ𝑁
via rounding) in later sections, but for our main analysis, considering deterministic Σ𝑁 -valued
algorithms will suffice. In particular, we consider the class of so-called low degree algorithms, given
by either low degree polynomials or by functions with low coordinate degree. Compared to analyti-
cally-defined classes of stable algorithms (e.g. Lipschitz, etc.), these algorithms have an algebraic
structure making them amenable to precise stability analysis. In addition, the low degree heuristic
suggests that degree 𝐷 algorithms (in either sense) are believed to serve as the simplest represen-
tatives for the class of 𝑒𝑂(𝐷)-time algorithms [53]. This is a reasonable expectation for number
partitioning, enabling us to translate our results into heuristic runtime bounds.

Our results show strong low degree hardness for the NPP at energy levels between the statistical
and computational thresholds, in the sense of Huang and Sellke [54].

Definition 1.2 (Strong Low Degree Hardness [54, Def. 3]).  A sequence of random search problems,
that is, a 𝑁-indexed sequence of random input vectors

𝑔𝑁 ∈ 𝐑𝑑𝑁

and random subsets

𝑆𝑁 = 𝑆𝑁(𝑔𝑁) ⊆ Σ𝑁

exhibits strong low degree hardness (SLDH) up to degree 𝐷 ≤ 𝑜(𝐷𝑁) if, for all sequences of degree
𝑜(𝐷𝑁) algorithms 𝒜𝑁 :  (𝑔, 𝜔) ↦ 𝑥 with 𝐄‖𝒜(𝑦𝑁)‖2 ≤ 𝑂(𝑁), we have

𝐏(𝒜𝑁(𝑔𝑁 , 𝜔) ∈ 𝑆𝑁) ≤ 𝑜(1).

There are two related notions of degree which we want to consider in Definition  1.2. The first
is traditional polynomial degree, applicable for algorithms given in each coordinate by low degree
polynomial functions of the inputs. In this case, we show

Theorem 1.3 (Results of Section 3.1).  The NPP exhibits SLDH for degree 𝐷 polynomial algorithms, for
(a) 𝐷 ≤ 𝑜(exp2(𝛿𝑁/2)) when 𝐸 = 𝛿𝑁  for 𝛿 > 0;
(b) 𝐷 ≤ 𝑜(exp2(𝐸/4)) when 𝜔(log 𝑁) ≤ 𝐸 ≤ 𝑜(𝑁).
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Under the low degree heuristic, this suggests that polynomial algorithms require double exponen-
tial time to achieve the statistical optimal discrepancy; given that brute-force search requires
exponential time, this is strong evidence that polynomial algorithms are poor models for the NPP.

Thus, we turn to the second, more general notion of coordinate degree: a function 𝑓:  𝐑𝑁 → 𝐑
has coordinate degree 𝐷 if it can be expressed as a linear combination of functions depending on
combinations of no more than 𝐷 coordinates. While related to polynomial degree, this enables us
to consider a far broader class of algorithms, in which case we show

Theorem 1.4 (Results of Section 3.2).  The NPP exhibits SLDH for coordinate degree 𝐷 algorithms, for
(a) 𝐷 ≤ 𝑜(𝑁) when 𝐸 = 𝛿𝑁  for 𝛿 > 0;
(b) 𝐷 ≤ 𝑜(𝐸/ log2 𝑁) when 𝜔(log2 𝑁) ≤ 𝐸 ≤ 𝑜(𝑁).

These results are likely to be the best-possible under the low degree heuristic, which we discuss
in Remark  3.15. In particular, the energy-degree tradeoff of 𝐷 ≤ 𝑜(𝐸) implies finding solutions
with energy 𝐸 requires time 𝑒Ω̃(𝐸), and as we’ll show, it is possible to achieve such discrepancies
via a restricted exponential-time search. Given this, our method produces a sharp energy-runtime
tradeoff, indicating there are no nontrivial algorithms that save more than a polylogarithmic factor
in the runtime exponent over brute-force search. Overall, our approach towards Theorem 1.3 and
Theorem 1.4 suggest that in the case of problems with brittle solution geometry, conditional land-
scape obstructions are an extremely powerful tool for proving algorithmic hardness.

The rest of the thesis is organized as follows. We review the low degree heuristic and work with
low coordinate degree algorithms in Section 2. In particular, we provide a self-contained introduc-
tion to coordinate degree and related decompositions of 𝐿2 functions in Section 2.1. Our main results
then constitute Section 3; after giving an overview of our proof strategy, we prove Theorem 1.3 in
Section 3.1, and likewise prove Theorem 1.4 in Section 3.2. We conclude in Section 4 by extending our
results to the case of 𝐑𝑁 -valued algorithms and finish by discussing directions for future research.

1.4 Conventions and Fundamentals
We use the standard Bachmann-Landau notations 𝑜(⋅), 𝑂(⋅), 𝜔(⋅), Ω(⋅), Θ(⋅), taken in the limit 𝑁 →
∞. In addition, we write 𝑓(𝑁) ≍ 𝑔(𝑁), 𝑓(𝑁) ≪ 𝑔(𝑁), or 𝑓(𝑁) ≫ 𝑔(𝑁) when 𝑓(𝑁) = Θ(𝑔(𝑁)),
𝑓(𝑁) = 𝑜(𝑔(𝑁)), or 𝑓(𝑁) = 𝜔(𝑔(𝑁)), respectively.

We write [𝑁] ≔ {1, …, 𝑁}. If 𝑆 ⊆ [𝑁], then 𝑆 ≔ [𝑁] ∖ 𝑆 is the complimentary set of indices. If
𝑥 ∈ 𝐑𝑁  and 𝑆 ⊆ [𝑁], then 𝑥𝑆  is the vector with

(𝑥𝑆)𝑖 ≔ {𝑥𝑖 𝑖 ∈ 𝑆,
0 else.

In particular, for 𝑥, 𝑦 ∈ 𝐑𝑁 , ⟨𝑥𝑆, 𝑦⟩ = ⟨𝑥, 𝑦𝑆⟩ = ⟨𝑥𝑆, 𝑦𝑆⟩.

On 𝐑𝑁 , we write ‖⋅‖ for the Euclidean norm, and 𝐵(𝑥, 𝑟) ≔ {𝑦 ∈ 𝐑𝑁 : ‖𝑦 − 𝑥‖ < 𝑟} for the
Euclidean ball of radius 𝑟 around 𝑥. We use 𝒩(𝜇, 𝜎2) to denote the scalar Normal distribution
with given mean and variance. In addition, we write “i.i.d.” to mean independently and identically
distributed, and “r.v.” to mean random variable (or random vector, if it is clear from context).

Throughout the remainder of this thesis, we will make use of the following general results:

Lemma 1.5 (Normal Small-Probability Estimate).  Let 𝐸, 𝜎2 > 0, and suppose 𝑍 | 𝜇 ∼ 𝒩(𝜇, 𝜎2). Then
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𝐏(|𝑍| ≤ 2−𝐸 | 𝜇) ≤ exp2(−𝐸 − 1
2

log2(𝜎2) + 𝑂(1)). (1.3)

Proof :  Observe that conditional on 𝜇, the distribution of 𝑍  is bounded as

𝜑𝑍|𝜇(𝑧) ≤ 1√
2𝜋𝜎2

𝑒− (𝑧−𝜇)2

2𝜎2 ≤ (2𝜋𝜎2)−1/2.

Integrating over |𝑧| ≤ 2−𝐸  then gives (1.3), via

𝐏(|𝑍| ≤ 2−𝐸) = ∫
|𝑧|≤2−𝐸

(2𝜋𝜎2)−1/2 d𝑧 ≤ 2−𝐸−1
2 log2(2𝜋𝜎2)+1. □

Note that (1.3) is a decreasing function of 𝜎2. Thus, if there exists 𝛾 with 𝜎2 ≥ 𝛾 > 0, then (1.3) is
bounded by exp2(−𝐸 − log2(𝛾)/2 + 𝑂(1)).

Lemma 1.6 (Chernoff-Hoeffding).  Suppose that 𝐾 ≤ 𝑁/2, and let ℎ(𝑥) = −𝑥 log2(𝑥) − (1 −
𝑥) log2(𝑥) be the binary entropy function. Then, for 𝑝 ≔ 𝐾/𝑁 ,

∑
𝑘≤𝐾

(𝑁
𝑘

) ≤ exp2(𝑁ℎ(𝑝)) ≤ exp2(2𝑁𝑝 log2(
1
𝑝
)).

Proof :  Consider a Bin(𝑁, 𝑝) random variable 𝑆. Summing its PMF from 0 to 𝐾, we have

1 ≥ 𝐏(𝑆 ≤ 𝐾) = ∑
𝑘≤𝐾

(𝑁
𝑘

)𝑝𝑘(1 − 𝑝)𝑁−𝑘 ≥ ∑
𝑘≤𝐾

(𝑁
𝑘

)𝑝𝐾(1 − 𝑝)𝑁−𝐾 .

The last inequality follows by multiplying each term by (𝑝/(1 − 𝑝))𝐾−𝑘 ≤ 1. Rearranging gives

∑
𝑘≤𝐾

(𝑁
𝑘

) ≤ 𝑝−𝐾(1 − 𝑝)−(𝑁−𝐾)

= exp2(−𝐾 log2(𝑝) − (𝑁 − 𝐾) log2(1 − 𝑝))

= exp2(𝑁 ⋅ (−𝐾
𝑁

log2(𝑝) − (𝑁 − 𝐾
𝑁

) log2(1 − 𝑝)))

= exp2(𝑁 ⋅ (−𝑝 log2(𝑝) − (1 − 𝑝) log2(1 − 𝑝))) = exp2(𝑁ℎ(𝑝)).

The final equality then follows from the bound ℎ(𝑝) ≤ 2𝑝 log2(1/𝑝) for 𝑝 ≤ 1/2. □
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2 Low Degree Algorithms

For our purposes, an algorithm is a function which takes as input an instance 𝑔 ∈ 𝐑𝑁  and outputs
some 𝑥 ∈ Σ𝑁 . This definition can be extended to functions giving outputs on 𝐑𝑁  and rounding
to a vertex on the hypercube Σ𝑁 , which we consider in Section 4. Alternatively, we could consider
randomized algorithms by taking as additional input some randomness 𝜔 independent of the problem
instance. However, as this extension requires only minor changes, which we describe in Remark 3.8,
most of our analysis will focus on the deterministic case.

The category of algorithms we consider are known as low degree algorithms. We treat two closely
related notions of degree: first is polynomial degree, in which we assume our algorithms are given
coordinate-wise by polynomials of some bounded degree. The second, more general notion is
coordinate degree, which roughly counts how many coordinates can interact nonlinearly; this can
be applied to arbitrary algorithms given by 𝐿2 functions. While polynomial algorithms are widely
known and studied, low coordinate degree algorithms were first introduced in Hopkins’ thesis [53],
and were later used by Brennan et al. [21] and Mossel et al. [65], [50] (although in the latter case, they
were shown to be equivalent to polynomial algorithms). Compared to analytically-defined classes
of algorithms (e.g. Lipschitz), these low degree algorithms have an algebraic structure that we can
exploit to precisely control their stability properties.

As mentioned in the introduction, our goal is to show strong low degree hardness, meaning that
low degree algorithms (either meaning low polynomial degree or low coordinate degree) fail to find
solutions to the NPP with high probability. However, our proofs only use the low degree assumption
to apply stability bounds: roughly, a stable algorithm cannot “overcome” the gaps between solu-
tions for two closely-related instances of the NPP. Why, then, do we restrict to low degree algorithms
specifically? The main reason is the low degree heuristic.

For nice random optimization problems, there exists a successful degree 𝐷 algorithm
if and only if there exists a successful algorithm running in time 𝑒𝑂(𝐷).

This heuristic was first proposed in Hopkins’ thesis [53], and later expanded upon by Kunisky,
Wein, and Bandeira [72], although this was primarily in the context of low degree polynomials
for hypothesis testing. Kunisky later expanded these results when applying low coordinate degree
methods towards hypothesis testing [70], [71]. Huang and Sellke then observed that strong low
degree hardness up to degree 𝑜(𝑁) can be thought of as evidence of a random optimization problem
requiring exponential 𝑒Ω̃(𝑁) time to find globally optimal solutions [54]. They prove strong low
degree hardness for a variety of canonical problems: optimization of pure 𝑘-spin glasses, symmetric
binary perceptrons, and random 𝑘-SAT, to name a few, most of which are optimal under the low
degree heuristic. However, Huang and Mossel’s work on broadcasting on trees, this heuristic breaks
down: degree 𝐷 ≤ 𝑂(log 𝑁) algorithms fail despite there existing a linear-time algorithm known as
Belief Propagation [50]. To this end, the authors suggest this discrepancy arises from the require-
ment of “depth” in the Belief Propagation algorithm – roughly, despite running in linear time, this
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algorithm still struggles in practice in the “hard” regime. As a takeaway, we can surmise that the
low degree heuristic is reasonable for describing random search problems involving optimization
of a “flat” structure, in which algorithmic complexity cannot hide behind 𝑁-independent factors.
Thus, having an explicit handle on algorithm degree enables us to both control stability and extend
our results to rule out general polynomial-time algorithms.

We start by introducing the theory of Efron-Stein decompositions and coordinate degree, and
demonstrate how elementary Fourier analysis can give straightforward 𝐿2 stability properties. We
then review the theory of Hermite polynomials, which gives altered 𝐿2 bounds for polynomial func-
tions. This section then concludes with a discussion of our terminology for low polynomial degree
and low coordinate degree algorithms, and we summarize our stability analysis in Proposition 2.19.

2.1 Coordinate Degree and 𝐿2 Stability
First, we consider a general class of putative algorithms, and construct the “coordinate decompo-
sition” underlying the notion of coordinate degree. Given this notion, deriving stability bounds
becomes a straightforward piece of functional analysis. To start, recall the notion of 𝐿2 functions.

Definition 2.1.  Let 𝜋 be a probability distribution on 𝐑. The 𝐿2 space 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) is the space of
functions 𝑓:  𝐑𝑁 → 𝐑 with finite 𝐿2 norm:

𝐄[𝑓2] ≔ ∫
𝐑𝑁

𝑓(𝑥)2 d𝜋⊗𝑁(𝑥) < ∞.

Alternatively, this is the space of 𝐿2 functions of 𝑁  i.i.d. random variables 𝑥𝑖, distributed as 𝜋.

This is an extremely broad class of functions; for instance, all bounded functions are 𝐿2. Given any
function 𝑓 ∈ 𝐿2(𝐑𝑁 , 𝜋⊗𝑁), we can then consider how it depends on various subsets of the 𝑁  input
coordinates. In principle, everything about 𝑓  should be reflected in how it acts on all possible such
subsets. To formalize this intuition, define the following coordinate projection.

Definition 2.2.  Let 𝑓 ∈ 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) and 𝐽 ⊆ [𝑁]. The projection of 𝑓  onto 𝐽  is the function
𝑓⊆𝐽 :  𝐑𝑁 → 𝐑 given by

𝑓⊆𝐽(𝑥) ≔ 𝐄[𝑓(𝑥1, …, 𝑥𝑛) | {𝑥𝑖, 𝑖 ∈ 𝐽}] = 𝐄[𝑓(𝑥) | 𝑥𝐽 ].

Intuitively 𝑓⊆𝐽  is 𝑓  with the 𝐽  coordinates re-randomized, so 𝑓⊆𝐽  only depends on the coordinates
in 𝐽 . However, depending on how 𝑓  accounts for higher-order interactions, it might be the case that
𝑓⊆𝐽  is fully described by some 𝑓⊆𝐽′ , for 𝐽 ′ ⊊ 𝐽 . What we really want is to decompose 𝑓  as

𝑓 = ∑
𝑆⊆[𝑁]

𝑓=𝑆, (2.1)

where each 𝑓=𝑆  only depends on the coordinates in 𝑆, but not any smaller subset. That is, if 𝑇 ⊊ 𝑆
and 𝑔 depends only on the coordinates in 𝑇 , then ⟨𝑓=𝑆, 𝑔⟩ = 0.

This decomposition, often called the Efron-Stein, orthogonal, or Hoeffding decomposition, does
indeed exist. Its applications in statistics come from the fact that it provides a way of decomposing
the total variance of a function into the components coming from specific sets of coordinates, a step
which underlies the ANOVA methodology. These low coordinate degree decompositions have also
been used in computational chemistry: see the review by Li et al. [76] for more details. The Efron-
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Stein decomposition exhibits the following combinatorial construction; our presentation largely
follows [85, § 8.3], as well as the paper [70].

The motivating fact is that for any 𝐽 ⊆ [𝑁], we should have

𝑓⊆𝐽 = ∑
𝑆⊆𝐽

𝑓=𝑆. (2.2)

Intuitively, 𝑓⊆𝐽  captures everything about 𝑓  depending on the coordinates in 𝐽 , and each 𝑓=𝑆

captures precisely the interactions within each subset 𝑆 of 𝐽 . The construction of 𝑓=𝑆  proceeds by
inverting this formula.

First, we consider the case 𝐽 = ∅. It is clear that 𝑓=∅ = 𝑓⊆∅, which, by Definition  2.2 is the
constant function 𝐄[𝑓]. Next, if 𝐽 = {𝑗} is a singleton, then (2.2) gives

𝑓⊆{𝑗} = 𝑓=∅ + 𝑓={𝑗},

and as 𝑓⊆{𝑗}(𝑥) = 𝐄[𝑓 | 𝑥𝑗], we get

𝑓={𝑗} = 𝐄[𝑓 | 𝑥𝑗] − 𝐄[𝑓].

This function only depends on 𝑥𝑗; all other coordinates are averaged over, so this coordinate piece
measures how the expectation of 𝑓  changes given 𝑥𝑗.

Continuing on to sets of two coordinates, some brief manipulation gives, for 𝐽 = {𝑖, 𝑗},

𝑓⊆{𝑖,𝑗} = 𝑓=∅ + 𝑓={𝑖} + 𝑓={𝑗} + 𝑓={𝑖,𝑗}

= 𝑓⊆∅ + (𝑓⊆{𝑖} − 𝑓⊆∅) + (𝑓⊆{𝑗} − 𝑓⊆∅) + 𝑓={𝑖,𝑗},

∴ 𝑓={𝑖,𝑗} = 𝑓⊆{𝑖,𝑗} − 𝑓⊆{𝑖} − 𝑓⊆{𝑗} + 𝑓⊆∅.

We can imagine that this accounts for the two-way interaction of 𝑖 and 𝑗, namely 𝑓⊆{𝑖,𝑗} =
𝐄[𝑓 | 𝑥𝑖, 𝑥𝑗], while “correcting” for the one-way effects of 𝑥𝑖 and 𝑥𝑗 individually. Inductively, we
can continue in this way and define all the 𝑓=𝐽  via inclusion-exclusion.

𝑓=𝐽 ≔ ∑
𝑆⊆𝐽

(−1)|𝐽|−|𝑆|𝑓⊆𝑆 = ∑
𝑆⊆𝐽

(−1)|𝐽|−|𝑆|𝐄[𝑓 | 𝑥𝑆].

This construction, along with some direct calculations, leads to the following theorem.

Theorem 2.3 ([85, Thm 8.35]).  Each 𝑓 ∈ 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) has a unique decomposition as

𝑓 = ∑
𝑆⊆[𝑁]

𝑓=𝑆,

known as the Efron-Stein decomposition, where the functions 𝑓=𝑆 ∈ 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) satisfy:
(1) 𝑓=𝑆  depends only on the coordinates in 𝑆;
(2) if 𝑇 ⊊ 𝑆 and 𝑔 ∈ 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) only depends on coordinates in 𝑇 , then ⟨𝑓=𝑆, 𝑔⟩ = 0.

In addition, this decomposition has the following properties.
(3) Condition (2) holds whenever 𝑆 ⊈ 𝑇 .
(4) The decomposition is orthogonal: ⟨𝑓=𝑆, 𝑓=𝑇 ⟩ = 0 for 𝑆 ≠ 𝑇 .
(5) ∑𝑆⊆𝑇 𝑓=𝑆 = 𝑓⊆𝑇 .
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(6) For each 𝑆 ⊆ [𝑁], 𝑓 ↦ 𝑓=𝑆  is a linear operator.

In summary, this decomposition of 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) functions into their different interaction levels not
only exists, but is orthogonal, enabling us to apply tools from elementary Fourier analysis.

Theorem 2.3 further implies that we can define subspaces of 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) (see also [70, § 1.3])

𝑉𝐽 ≔ {𝑓 ∈ 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) : 𝑓 = 𝑓⊆𝐽},

𝑉≤𝐷 ≔ ∑
𝐽⊆[𝑁]
|𝐽|≤𝐷

𝑉𝑇 . (2.3)

These capture functions which only depend on some subset of coordinates, or some bounded
number of coordinates. Note that 𝑉[𝑁] = 𝑉≤𝑁 = 𝐿2(𝐑𝑁 , 𝜋⊗𝑁).

Definition 2.4.  The coordinate degree of a function 𝑓 ∈ 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) is

cdeg(𝑓) ≔ max{|𝑆| : 𝑆 ⊆ [𝑁], 𝑓=𝑆 ≠ 0} = min{𝐷 : 𝑓 ∈ 𝑉≤𝐷}.

If 𝑓 = (𝑓1, …, 𝑓𝑀):  𝐑𝑁 → 𝐑𝑀  is a multivariate function with each 𝑓𝑖 ∈ 𝐿2(𝐑𝑁 , 𝜋⊗𝑁), then

cdeg(𝑓) ≔ max
𝑖∈[𝑀]

cdeg(𝑓𝑖).

Intuitively, the coordinate degree is the maximum size of (nonlinear) multivariate interaction that
𝑓  accounts for. Of course, this degree is also bounded by 𝑁 , very much unlike polynomial degree.
Note as a special case that any multivariate polynomial of degree 𝐷 has coordinate degree at most
𝐷. As an example, the function 𝑥1 + 𝑥2 has both polynomial degree and coordinate degree 1, while
𝑥1 + 𝑥2

2 has polynomial degree 2 and coordinate degree 1. We are especially interested in algorithms
coming from functions in 𝑉≤𝐷, which we term low coordinate degree algorithms.

As we are interested in how these algorithms behave for “close” instances, we are led to consider
the following “noise operator,” which measures the effect of small changes in the input on the Efron-
Stein decomposition. We need the following notion of distance between instances.

Definition 2.5.  For 𝑝 ∈ [0, 1] and 𝑥 ∈ 𝐑𝑁 , we say 𝑦 ∈ 𝐑𝑁  is 𝑝-resampled from 𝑥, denoted 𝑦 ∼
𝜋⊗𝑁

𝑝 (𝑥), if 𝑦 is chosen as follows: for each 𝑖 ∈ [𝑁], independently,

𝑦𝑖 = {𝑥𝑖 with probability 𝑝,
drawn from 𝜋 with probability 1 − 𝑝.

We say (𝑥, 𝑦) are a 𝑝-resampled pair.

Note that being 𝑝-resampled and being 𝑝-correlated are rather different – for one, there is a nonzero
probability that, for 𝜋 a continuous probability distribution, 𝑥 = 𝑦 when they are 𝑝-resampled, even
though this almost surely never occurs if they were 𝑝-correlated.

Definition 2.6.  For 𝑝 ∈ [0, 1], the noise operator 𝑇𝑝 is the linear operator on 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) defined by

𝑇𝑝𝑓(𝑥) = 𝐄𝑦∼𝜋⊗𝑁
𝑝 (𝑥)[𝑓(𝑦)].

In particular, ⟨𝑓, 𝑇𝑝𝑓⟩ = 𝐄(𝑥,𝑦) 𝑝-resampled[𝑓(𝑥) ⋅ 𝑓(𝑦)].

15



This noise operator changes the Efron-Stein decomposition, and hence the behavior of low coordi-
nate degree functions, in a controlled way.

Lemma 2.7.  Let 𝑝 ∈ [0, 1] and 𝑓 ∈ 𝐿2(𝐑𝑁 , 𝜋⊗𝑁) have decomposition 𝑓 = ∑𝑆⊆[𝑁] 𝑓
=𝑆 . Then

𝑇𝑝𝑓(𝑥) = ∑
𝑆⊆[𝑁]

𝑝|𝑆|𝑓=𝑆.

Proof :  Let 𝐽  be a random subset formed by including each 𝑖 ∈ [𝑁] independently with probability
𝑝. By definition, 𝑇𝑝𝑓(𝑥) = 𝐄𝐽 [𝑓⊆𝐽(𝑥)] (i.e., pick a random subset of coordinates to fix, and re-
randomize the rest). We know by Theorem 2.3 that 𝑓⊆𝐽 = ∑𝑆⊆𝐽 𝑓=𝑆 , so

𝑇𝑝𝑓(𝑥) = 𝐄𝐽[∑
𝑆⊆𝐽

𝑓=𝑆] = ∑
𝑆⊆[𝑁]

𝐄𝐽 [𝐼(𝑆 ⊆ 𝐽)] ⋅ 𝑓=𝑆 = ∑
𝑆⊆[𝑁]

𝑝|𝑆|𝑓=𝑆,

since for a fixed 𝑆 ⊆ [𝑁], the probability that 𝑆 ⊆ 𝐽  is 𝑝|𝑆|. □

Thus, we can derive the following stability bound on low coordinate degree functions.

Theorem 2.8.  Let 𝑝 ∈ [0, 1] and 𝑓 = (𝑓1, …, 𝑓𝑀):  𝐑𝑁 → 𝐑𝑀  be a coordinate degree 𝐷 multivariate
function. Suppose that (𝑥, 𝑦) are a 𝑝-resampled pair under 𝜋⊗𝑁  and 𝐄‖𝑓(𝑥)‖2 = 1. Then

𝐄‖𝑓(𝑥) − 𝑓(𝑦)‖2 ≤ 2(1 − 𝑝𝐷) ≤ 2(1 − 𝑝)𝐷. (2.4)

Proof :  Observe that

𝐄‖𝑓(𝑥) − 𝑓(𝑦)‖2 = 𝐄‖𝑓(𝑥)‖2 + 𝐄‖𝑓(𝑦)‖2 − 2𝐄⟨𝑓(𝑥), 𝑓(𝑦)⟩

= 2 − 2(∑
𝑖

𝐄[𝑓𝑖(𝑥)𝑓𝑖(𝑦)])

= 2 − 2(∑
𝑖

⟨𝑓𝑖, 𝑇𝑝𝑓𝑖⟩).

(2.5)

Here, we have for each 𝑖 ∈ [𝑀] that

⟨𝑓𝑖, 𝑇𝑝𝑓𝑖⟩ = ⟨ ∑
𝑆⊆[𝑁]

𝑓=𝑆
𝑖 , ∑

𝑆⊆[𝑁]
𝑝|𝑆|𝑓=𝑆

𝑖 ⟩ = ∑
𝑆⊆[𝑁]

𝑝|𝑆|‖𝑓=𝑆
𝑖 ‖2

by Lemma 2.7 and orthogonality. Now, as each 𝑓𝑖 has coordinate degree at most 𝐷, the sum above
can be taken only over 𝑆 ⊆ [𝑁] with 0 ≤ |𝑆| ≤ 𝐷, giving the bound

𝑝𝐷𝐄[𝑓𝑖(𝑥)2] ≤ ⟨𝑓𝑖, 𝑇𝑝𝑓𝑖⟩ = 𝐄[𝑓𝑖(𝑥) ⋅ 𝑇𝑝𝑓𝑖(𝑥)] ≤ 𝐄[𝑓𝑖(𝑥)2].

Summing up over 𝑖 and using that 𝐄‖𝑓(𝑥)‖2 = 1 yields

𝑝𝐷 ≤ ∑
𝑖

⟨𝑓𝑖, 𝑇𝑝𝑓𝑖⟩ = 𝐄⟨𝑓(𝑥), 𝑓(𝑦)⟩ ≤ 1.

Finally, we can substitute into (2.5) to get⁵

⁵The last inequality follows from (1 − 𝑝𝐷) = (1 − 𝑝)(1 + 𝑝 + 𝑝2 + …𝑝𝐷−1); the bound is tight for 𝑝 ≈ 1.
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𝐄‖𝑓(𝑥) − 𝑓(𝑦)‖2 ≤ 2 − 2𝑝𝐷 = 2(1 − 𝑝𝐷) ≤ 2(1 − 𝑝)𝐷. □

2.2 Hermite Polynomials
Alternatively, we can consider the much more restrictive (but more concrete) class of honest
polynomials. When considered as functions of independent Normal variables, such functions admit
a simple description in terms of Hermite polynomials, which enables us to prove bounds similar to
Theorem 2.8. This theory is classical, and we encourage the reader to consult [85, §11] for details.

Definition 2.9.  Let 𝛾𝑁  be the 𝑁-dimensional standard Normal measure on 𝐑𝑁 . The 𝑁-dimensional
Gaussian space is the space 𝐿2(𝐑𝑁 , 𝛾𝑁) of 𝐿2 functions of 𝑁  i.i.d. standard Normal r.v.s.

Note that under the usual 𝐿2 inner product ⟨𝑓, 𝑔⟩ = 𝐄[𝑓 ⋅ 𝑔], this is a separable Hilbert space.

It is a well-known fact that the monomials 1, 𝑧, 𝑧2, … form a complete basis for 𝐿2(𝐑, 𝛾) [85,
Thm 11.22]. However, these are far from an orthonormal “Fourier” basis; for instance, we know
𝐄[𝑧2] = 1 for 𝑧 ∼ 𝒩(0, 1). By the Gram-Schmidt process, these monomials can be converted into
the (normalized) Hermite polynomials ℎ𝑗 for 𝑗 ≥ 0, given by

ℎ0(𝑧) = 1, ℎ1(𝑧) = 𝑧, ℎ2(𝑧) = 𝑧2 − 1√
2

, ℎ3(𝑧) = 𝑧3 − 3𝑧√
6

, …. (2.6)

Note here that each ℎ𝑗 is a degree 𝑗 polynomial. The following is well-known.

Theorem 2.10 ([85, Prop 11.30]).  The polynomials ℎ𝑗 form a complete orthonormal basis for 𝐿2(𝐑, 𝛾).

To extend this to 𝐿2(𝐑𝑁 , 𝛾𝑁), we can take products. For a multi-index 𝛼 ∈ ℕ𝑁 , we define the
multivariate Hermite polynomial ℎ𝛼:  𝐑𝑁 → 𝐑 as

ℎ𝛼(𝑧) ≔ ∏
𝑁

𝑗=1
ℎ𝛼𝑗

(𝑧𝑗).

The degree of ℎ𝛼 is clearly |𝛼| = ∑𝑗 𝛼𝑗.

Theorem 2.11.  The Hermite polynomials (ℎ𝛼)𝛼∈ℕ𝑁  form a complete orthonormal basis for 𝐿2(𝐑𝑁 , 𝛾𝑁).
In particular, every 𝑓 ∈ 𝐿2(𝐑𝑁 , 𝛾𝑁) has a unique expansion (converging in the 𝐿2 norm) as

𝑓(𝑧) = ∑
𝛼∈ℕ𝑁

𝑓(𝛼)ℎ𝛼(𝑧).

As a consequence of the uniqueness of the expansion in Theorem  2.11, we see that polynomials
are their own Hermite expansion. Namely, let 𝐻≤𝑘 ⊆ 𝐿2(𝐑𝑁 , 𝛾𝑁) be the subset of multivariate
polynomials of degree at most 𝑘. Then, any 𝑓 ∈ 𝐻≤𝑘 can be Hermite expanded as

𝑓(𝑧) = ∑
𝛼∈ℕ𝑁

𝑓(𝛼)ℎ𝛼(𝑧) = ∑
|𝛼|≤𝑘

𝑓(𝛼)ℎ𝛼(𝑧).

Thus, 𝐻≤𝑘 is the closed linear span of the set {ℎ𝛼 : |𝛼| ≤ 𝑘}.

When working with honest polynomials, the traditional notion of correlation is a much more
natural measure of “distance” between inputs.
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Definition 2.12.  Let (𝑥, 𝑦) be a pair of 𝑁-dimensional standard Normal vectors. We say (𝑥, 𝑦) are 𝑝
-correlated if (𝑥𝑖, 𝑦𝑖) are 𝑝-correlated for each 𝑖 ∈ [𝑁], and these pairs are mutually independent.

Analogously to the Efron-Stein setting, we can consider the resulting “noise operator” as a way of
measuring the effect on a function of a small change in the input.

Definition 2.13.  For 𝑝 ∈ [0, 1], the Gaussian noise operator 𝑇𝑝 is the linear operator on 𝐿2(𝐑𝑁 , 𝛾𝑁):

𝑇𝑝𝑓(𝑥) = 𝐄𝑦 𝑝-correlated to 𝑥[𝑓(𝑦)] = 𝐄𝑦∼𝒩(0,𝐼𝑁)[𝑓(𝑝𝑥 + √1 − 𝑝2𝑦)].

This operator admits a more classical description in terms of the Ornstein-Uhlenbeck semigroup,
but we will not need that connection here. As it happens, a straightforward computation with the
Normal moment generating function gives the following lemma.

Lemma 2.14 ([85, Prop 11.37]).  Let 𝑝 ∈ [0, 1] and 𝑓 ∈ 𝐿2(𝐑𝑁 , 𝛾𝑁). Then, 𝑇𝑝𝑓  has Hermite expansion

𝑇𝑝𝑓 = ∑
𝛼∈ℕ𝑁

𝑝|𝛼|𝑓(𝛼)ℎ𝛼,

and in particular,

⟨𝑓, 𝑇𝑝𝑓⟩ = ∑
𝛼∈ℕ𝑁

𝑝|𝛼|𝑓(𝛼)2.

With this in hand, we can prove a similar stability bound to Theorem 2.8.

Theorem 2.15.  Let 𝑝 ∈ [0, 1] and 𝑓 = (𝑓1, …, 𝑓𝑀):  𝐑𝑁 → 𝐑𝑀  be a multivariate degree 𝐷 polynomial.
Suppose that (𝑥, 𝑦) are a 𝑝-correlated pair of standard Normal vectors and 𝐄‖𝑓(𝑥)‖2 = 1. Then,

𝐄‖𝑓(𝑥) − 𝑓(𝑦)‖2 ≤ 2(1 − 𝑝𝐷) ≤ 2(1 − 𝑝)𝐷. (2.7)

Proof :  The proof is almost identical to that of Theorem  2.8 (see also [38, Lem. 3.4]). The main
modification is in realizing that for each 𝑓𝑖, having degree at most 𝐷 implies that 𝑓𝑖(𝛼) = 0 for |𝛼| >
𝐷. Thus, as 𝑝𝐷 ≤ 𝑝𝑠 ≤ 1 for all 𝑠 ≤ 𝐷, we can apply Lemma 2.14 to get

𝑝𝐷𝐄[𝑓𝑖(𝑥)2] ≤ ⟨𝑓𝑖, 𝑇𝑝𝑓𝑖⟩ = ∑
𝛼∈ℕ𝑁:|𝛼|≤𝐷

𝑝|𝛼|𝑓𝑖(𝛼)2 ≤ 𝐄[𝑓𝑖(𝑥)2].

From here, the proof proceeds as before. □

As a comparison to the case for functions with coordinate degree 𝐷, notice that Theorem 2.15 gives,
generically, a much looser bound. In exchange, being able to use 𝑝-correlation as a “metric” on the
input domain will turn out to offer significant benefits in the arguments which follow, justifying
equal consideration of both classes of functions.

2.3 Stability of Low Degree Algorithms
We now formalize our notion of “algorithm” from Section 1.3.

Definition 2.16.  A (randomized) algorithm is a measurable function 𝒜:  (𝑔, 𝜔) ↦ 𝑥 ∈ Σ𝑁 , where 𝜔 ∈
Ω𝑁  is an independent random variable. Such an 𝒜 is deterministic if it does not depend on 𝜔.
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With the notions of low coordinate degree functions or low degree polynomials in hand, we can
consider algorithms based on such functions.

Definition 2.17.  A polynomial algorithm is an algorithm 𝒜(𝑔, 𝜔) where each coordinate of 𝒜(𝑔, 𝜔) is
given by a polynomial in the 𝑁  entries of 𝑔. If 𝒜 is a polynomial algorithm, then it has degree 𝐷 if
each coordinate has degree at most 𝐷 (with at least one equality).

Definition 2.18.  Suppose an algorithm 𝒜(𝑔, 𝜔) is such that each coordinate of 𝒜(−, 𝜔) is in
𝐿2(𝐑𝑁 , 𝜋⊗𝑁). Then, the coordinate degree of 𝒜 is the maximum coordinate degree of 𝒜(−, 𝜔).

With Theorem 2.8 and Theorem 2.15, we can derive the following algorithmic 𝐿2 stability bound.

Proposition 2.19 (Low Degree Stability – [54, Prop. 1.9]).  Suppose we have a deterministic algorithm
𝒜 with degree (resp. coordinate degree) ≤ 𝐷 and norm 𝐄‖𝒜(𝑔)‖2 ≤ 𝐶𝑁 . Then, for inputs 𝑔, 𝑔′ which are
(1 − 𝜀)-correlated (resp. (1 − 𝜀)-resampled),

𝐄‖𝒜(𝑔) − 𝒜(𝑔′)‖2 ≤ 2𝐶𝐷𝜀𝑁, (2.8)

and thus

𝐏(‖𝒜(𝑔) − 𝒜(𝑔′)‖ ≥ 2√𝜂𝑁) ≤ 𝐶𝐷𝜀
2𝜂

≍ 𝐷𝜀
𝜂

. (2.9)

Proof :  Let 𝐶′ ≔ 𝐄‖𝒜(𝑔)‖2 and define the rescaling 𝒜′ ≔ 𝒜/
√

𝐶′. Then, by Theorem 2.15 (or Theo-
rem 2.8, in the low coordinate degree case), we have

𝐄‖𝒜′(𝑔) − 𝒜′(𝑔′)‖2 = 1
𝐶′ 𝐄‖𝒜(𝑔) − 𝒜(𝑔′)‖2 ≤ 2𝐷𝜀.

Multiplying by 𝐶′ gives (2.8) (as 𝐶′ ≤ 𝐶𝑁). Finally, (2.9) follows from Markov’s inequality. □

Remark 2.20.  Note that Proposition 2.19 also holds for randomized algorithms. Namely, if 𝒜(𝑔, 𝜔)
is a randomized algorithm with polynomial or coordinate degree 𝐷 and 𝐄𝑔,𝜔‖𝒜(𝑔, 𝜔)‖2 ≤ 𝐶𝑁 , then
applying Markov’s inequality to 𝜔 ↦ 𝐄[‖𝒜(𝑔, 𝜔)‖2 | 𝜔] allows us to reduce to the deterministic case,
possibly after adjusting 𝐶.
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3 Proofs of Strong Low Degree Hardness

In this section, we prove Theorem  1.3 and Theorem  1.4 – that is, we exhibit strong low degree
hardness for both low polynomial degree and low coordinate degree algorithms.

Our argument utilizes what can be thought of as a “conditional” version of the overlap gap
property. Traditionally, proofs of algorithmic hardness use the overlap gap property as a global
obstruction: one shows that with high probability, there are no tuples of good solutions to a family
of correlated instances which are all roughly the same distance apart. Here, however, we show a
local obstruction; we condition on being able to solve a single instance and show that after a small
change to the instance, we cannot guarantee any solutions will exist close to the first one. This is an
instance of the “brittleness,” so to speak, that makes NPP so frustrating to solve; even small changes
in the instance break the landscape geometry, so that even if solutions exist, there is no way to know
where they will end up.

This conditional landscape obstruction approach is partially inspired by Huang and Sellke’s
recent work on strong low degree hardness for finding optima in spin glasses [54]. However, a main
reason for not appealing to an OGP-style result is Gamarnik and Kızıldağ’s disproof of the 𝑚-OGP
for sublinear energy levels [39, Thm. 2.5].

Our conditional obstruction (Proposition  3.5 in the low degree polynomial case, and Proposi-
tion 3.12 in the low coordinate degree case) is established by a first moment computation. That is,
we show that given “correlated” instances 𝑔, 𝑔′ and a point 𝑥 ∈ Σ𝑁  such that 𝑔′, 𝑥 are conditionally
independent given 𝑔, then any fixed point 𝑥′ ∈ Σ𝑁  has low probability of solving 𝑔′; then, the same
must hold for all 𝑥′ in a suitably small neighborhood of 𝑥. This is similar to the proof of the OGP
in the linear energy regime [39], but our method allows us to work with sublinear energy levels.
Heuristically, this is because the cardinality of neighborhoods of 𝑥 grows exponentially in 𝑁 , which
means that the number of 𝑚-tuples of such points grows much faster than any sublinearly small
probability. In contrast, the disproof of the OGP in the sublinear energy regime of Gamarnik and
Kızıldağ follows from a second moment computation: they show that the majority of pairs of 𝑚
-tuples of solutions are nearly “uncorrelated,” which again implies that globally, looking at large
ensembles of solutions fails to capture the brittleness of the NPP for cardinality reasons.

The proof of Theorem 1.3, stated formally as Theorem 3.6 and Theorem 3.7, is as follows.⁶ Let 𝐸
be an energy level and 𝐷 a maximum algorithm degree, both depending on 𝑁 . We assume that 𝐷
is bounded by a level depending on 𝐸 and 𝑁 , corresponding to the low degree regime in which we
want to show hardness. We then choose parameters 𝜂 (depending on 𝐸 and 𝑁) and 𝜀 (depending
on 𝐸, 𝐷, and 𝑁). As described in Section 2, assume 𝒜 is a deterministic, Σ𝑁 -valued algorithm with
polynomial degree at most 𝐷. Our goal is to show that for our choices of 𝜂 and 𝜀,

⁶The proof of Theorem 1.4 requires only minor modifications.
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𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔)) → 0

as 𝑁 → ∞. This is done in the following steps.

(a) Consider a (1 − 𝜀)-correlated pair 𝑔, 𝑔′ of NPP instances. These are 𝑁-dimensional standard
Normal vectors which are 𝑝-correlated for 𝑝 = 1 − 𝜀 (when considering coordinate degree,
we instead require them to be 𝑝-resampled).

(b) For 𝜀 small, 𝑔 and 𝑔′ have correlation close to 1. By Proposition 2.19, this implies that the
outputs of a low degree polynomial algorithm 𝒜 will be within distance 2

√
𝜂𝑁  of each other

with high probability.
(c) For 𝜂 small and fixed 𝒜(𝑔), Proposition 3.5 shows that conditional on 𝑔, 𝑔′ has no solutions

within distance 2
√

𝜂𝑁  of 𝒜(𝑔). This is the conditional landscape obstruction we described
above.

(d) Put together, these points imply that it is unlikely for 𝒜 to find solutions to both 𝑔 and 𝑔′ such
that the stability guarantee of Proposition 2.19 holds. By the positive correlation statement
in Lemma 3.2, we conclude that 𝒜(𝑔) ∉ 𝑆(𝐸; 𝑔) with high probability.

We can summarize the parameters in our argument in the following table.

Parameter Meaning Desired Direction Intuition

𝑁 Dimension - Showing strong hardness
asymptotically, want uni-
formly large.

𝐸 Energy;
want 𝑥 such that

|⟨𝑔, 𝑥⟩| ≤ 2−𝐸

Small Smaller 𝐸 rules out
weaker solutions; know
Ω(log2 𝑁) ≤ 𝐸 ≤ Θ(𝑁).

𝐷 Algorithm degree Large Higher degree means more
complex (i.e., longer time)
algorithms fail.

𝜀 Distance between 𝑔 and 𝑔′ Small Want to show that small
changes in instance lead to
“breaking” of landscape.

𝜂 Instability;
‖𝒜(𝑔) − 𝒜(𝑔′)‖ ≤ 2

√
𝜂𝑁 ,

for 𝑔 and 𝑔′ close

Large
(but bounded

by 𝐸, 𝑁)

Large 𝜂 indicates a more
unstable algorithm; want
to show that even weakly
stable algorithms fail.

Table 1: Explanation of Parameters

For the remainder of this section, we first show strong low degree hardness for polynomial algo-
rithms, and then for low coordinate degree algorithms. Throughout, we aim to keep constants as
explicit as possible, to clarify the nature in which 𝜀 and 𝜂 behave in the limit as 𝑁 → ∞. We end by
interpreting our results through the lens of the low degree heuristic, as well as discuss the extensions
needed to consider randomized Σ𝑁 -valued algorithms.
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3.1 Hardness for Low Degree Polynomial Algorithms
First, we consider the case where 𝒜 is a polynomial algorithm with degree 𝐷. Let 𝑔, 𝑔′ be (1 − 𝜀)-
correlated standard Normal r.v.s, and suppose 𝑥 ∈ Σ𝑁  depends only on 𝑔. Furthermore, let 𝜂 > 0 be
a parameter chosen in a manner specified later. We define the events

𝑆solve ≔ {𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔), 𝒜(𝑔′) ∈ 𝑆(𝐸; 𝑔′)},

𝑆stable ≔ {‖𝒜(𝑔) − 𝒜(𝑔′)‖ ≤ 2√𝜂𝑁},

𝑆cond(𝑥) ≔ {∄ 𝑥′ ∈ 𝑆(𝐸; 𝑔′) such that
‖𝑥 − 𝑥′‖ ≤ 2

√
𝜂𝑁

}.

(3.1)

Intuitively, the first two events ask that the algorithm solves both instances and is stable, respec-
tively. The last event, which depends on 𝑥, corresponds to the conditional landscape obstruction:
for an 𝑥 depending only on 𝑔, there is no solution to 𝑔′ which is close to 𝑥.

Lemma 3.1.  For 𝑥 ≔ 𝒜(𝑔), we have 𝑆solve ∩ 𝑆stable ∩ 𝑆cond(𝑥) = ∅.

Proof :  Suppose that 𝑆solve and 𝑆stable both occur. Letting 𝑥 ≔ 𝒜(𝑔) (which only depends on 𝑔) and
𝑥′ ≔ 𝒜(𝑔′), we know 𝑥′ ∈ 𝑆(𝐸; 𝑔′) and is within distance 2

√
𝜂𝑁  of 𝑥, contradicting 𝑆cond(𝑥). □

Now, define 𝑝cor
solve as the probability that the algorithm solves a single random instance:

𝑝cor
solve = 𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔)). (3.2)

We have the following positive correlation bound, which enables us to handle pairs of instances.

Lemma 3.2.  For 𝑔, 𝑔′ being (1 − 𝜀)-correlated, we have

𝐏(𝑆solve) = 𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔), 𝒜(𝑔′) ∈ 𝑆(𝐸; 𝑔′)) ≥ (𝑝cor
solve)

2.

Proof :  Let 𝑔, 𝑔(0), 𝑔(1) be three i.i.d. copies of 𝑔, and observe that 𝑔, 𝑔′ are jointly representable as

𝑔 =
√

1 − 𝜀𝑔 +
√

𝜀𝑔(0), 𝑔′ =
√

1 − 𝜀𝑔 +
√

𝜀𝑔(1).

Thus, since 𝑔, 𝑔′ are conditionally independent given 𝑔, we have

𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔), 𝒜(𝑔′) ∈ 𝑆(𝐸; 𝑔′)) = 𝐄[𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔), 𝒜(𝑔′) ∈ 𝑆(𝐸; 𝑔′) | 𝑔)]

= 𝐄[𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔) | 𝑔)2]

≥ 𝐄[𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔) | 𝑔)]2 = (𝑝cor
solve)

2,

where the last line follows by Jensen’s inequality. □

Remark 3.3.  Note that Lemma 3.2 also holds in the case where 𝒜(𝑔, 𝜔) is randomized, in the sense
of Definition 2.16. Namely, write

𝑝 = 𝐏(𝒜(𝑔, 𝜔) ∈ 𝑆(𝐸; 𝑔)), 𝑃 = 𝐏(𝒜(𝑔, 𝜔) ∈ 𝑆(𝐸; 𝑔), 𝒜(𝑔′, 𝜔) ∈ 𝑆(𝐸; 𝑔′)),
𝑝(𝜔) = 𝐏(𝒜(𝑔, 𝜔) ∈ 𝑆(𝐸; 𝑔) | 𝜔), 𝑃 (𝜔) = 𝐏(𝒜(𝑔, 𝜔) ∈ 𝑆(𝐸; 𝑔), 𝒜(𝑔′, 𝜔) ∈ 𝑆(𝐸; 𝑔′) | 𝜔).

Lemma 3.2 shows that for any 𝜔 ∈ Ω𝑁 , 𝑃(𝜔) ≥ 𝑝(𝜔)2. Then, by Jensen’s inequality,

𝑃 = 𝐄[𝑃(𝜔)] ≥ 𝐄[𝑝(𝜔)2] ≥ 𝐄[𝑝(𝜔)]2 = 𝑝2.
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Thus, in combination with Remark 2.20, the remainder of the proof also applies when 𝒜 depends
on an independent random seed 𝜔.

Meanwhile, define 𝑝cor
unstable, 𝑝cor

cond(𝑥), and 𝑝cor
cond by

𝑝cor
unstable ≔ 1 − 𝐏(𝑆stable), 𝑝cor

cond(𝑥) ≔ 1 − 𝐏(𝑆cond(𝑥)), 𝑝cor
cond ≔ max

𝑥∈Σ𝑁
𝑝cor

cond(𝑥). (3.3)

By Lemma 3.1, we know that for 𝑥 ≔ 𝒜(𝑔),

𝐏(𝑆solve) + 𝐏(𝑆stable) + 𝐏(𝑆cond(𝑥)) ≤ 2,

and rearranging yields

(𝑝cor
solve)

2 ≤ 𝑝cor
unstable + 𝑝cor

cond. (3.4)

Our proof now follows from showing that, for appropriate choices of 𝜀 and 𝜂 depending on 𝐷, 𝐸, and
𝑁 , both 𝑝cor

unstable and 𝑝cor
cond are 𝑜(1). The former is controlled by Proposition 2.19, so all that remains

is to control the latter. To this end, we start by bounding the size of neighborhoods on Σ𝑁 .

Proposition 3.4 (Hypercube Neighborhood Size).  Fix 𝑥 ∈ Σ𝑁 , and let 𝜂 ≤ 1/2. Then the number of 𝑥′

within distance 2
√

𝜂𝑁  of 𝑥 is bounded by

|{𝑥′ ∈ Σ𝑁 : ‖𝑥 − 𝑥′‖ ≤ 2√𝜂𝑁}| ≤ exp2(2𝜂 log2(1/𝜂)𝑁).

Proof :  Let 𝑘 be the number of coordinates which differ between 𝑥 and 𝑥′ (i.e., the Hamming
distance). We have ‖𝑥 − 𝑥′‖2 = 4𝑘, so ‖𝑥 − 𝑥′‖ ≤ 2

√
𝜂𝑁  if and only if 𝑘 ≤ 𝑁𝜂. Moreover, 𝑘 ≤ 𝑁/2

for 𝜂 ≤ 1/2. Thus, by Lemma 1.6,

∑
𝑘≤𝑁𝜂

(𝑁
𝑘

) ≤ exp2(2𝜂 log2(1/𝜂)𝑁). □

Thus, within a small neighborhood of any 𝑥 ∈ Σ𝑁 , the number of nearby points is exponential in
𝑁 , with a more nontrivial dependence on 𝜂. The question is then how many of these are solutions
to the correlated instance 𝑔′. This forms the heart of our conditional landscape obstruction.

Proposition 3.5 (Fundamental Estimate – Correlated Case).  Assume that (𝑔, 𝑔′) are (1 − 𝜀)-correlated
standard Normal vectors. Then, for any 𝑥 such that (𝑔′, 𝑥) are conditionally independent given 𝑔,

𝑝cor
cond(𝑥) ≔ 𝐏(∃ 𝑥′ ∈ 𝑆(𝐸; 𝑔′) such that

‖𝑥 − 𝑥′‖ ≤ 2
√

𝜂𝑁
)

≤ exp2(−𝐸 − 1
2

log2(𝜀) + 2𝜂 log2(
1
𝜂
)𝑁 + 𝑂(log 𝑁)).

(3.5)

Proof :  For each 𝑥′ within distance 2
√

𝜂𝑁  of 𝑥, let

𝐼𝑥′ ≔ 𝐼(𝑥′ ∈ 𝑆(𝐸; 𝑔′)) = 𝐼(|⟨𝑔′, 𝑥′⟩| ≤ 2−𝐸),

so that
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𝑝cor
cond(𝑥) = 𝐄

[
[[ ∑

‖𝑥−𝑥′‖≤2
√

𝜂𝑁

𝐄[𝐼𝑥′ | 𝑔]
]
]] = 𝐄

[
[[ ∑

‖𝑥−𝑥′‖≤2
√

𝜂𝑁

𝐏(|⟨𝑔′, 𝑥′⟩| ≤ 2−𝐸 | 𝑔)
]
]]. (3.6)

Note in particular that the range of this sum is independent of the inner probability, as 𝑔′ and 𝑥 are
conditionally independent.

To bound the inner probability, let 𝑔 be a Normal vector independent to 𝑔, and set 𝑝 = 1 −
𝜀. Observe that 𝑔′ can be represented as 𝑝𝑔 + √1 − 𝑝2𝑔, so ⟨𝑔′, 𝑥′⟩ = 𝑝⟨𝑔, 𝑥′⟩ + √1 − 𝑝2⟨𝑔, 𝑥′⟩. We
know ⟨𝑔, 𝑥′⟩ ∼ 𝒩(0, 𝑁), so conditional on 𝑔, we have ⟨𝑔′, 𝑥′⟩ | 𝑔 ∼ 𝒩(𝑝⟨𝑔, 𝑥′⟩, (1 − 𝑝2)𝑁). Note
that ⟨𝑔′, 𝑥′⟩ is nondegenerate for (1 − 𝑝2)𝑁 ≥ 𝜀𝑁 > 0; thus by Lemma 1.5, we get

𝐏(|⟨𝑔′, 𝑥′⟩| ≤ 2−𝐸 | 𝑔) ≤ exp2(−𝐸 − 1
2

log2(𝜀) + 𝑂(log 𝑁)). (3.7)

Finally, by Proposition 3.4, the number of terms in the sum (3.6) is bounded by exp2(2𝜂 log2(1/𝜂)𝑁),
so given that (3.7) is independent of 𝑔, we deduce (3.5). □

With this obstruction in hand, we can turn to showing strong low degree hardness for polynomial
algorithms. We start with hardness for linear energy levels, 𝐸 = Θ(𝑁); this corresponds to the
statistically optimal regime, as per [60]. Our hardness result in this regime roughly corresponds to
that of Gamarnik and Kızıldağ’s Theorem 3.2, although their result applies to stable algorithms and
does not show a low degree hardness-type statement [39, Thm. 3.2]. A key feature of considering
polynomial algorithms is that in Proposition 3.5, we can let 𝜀 be exponentially small in 𝐸, which in
the linear regime allows for it to be exponentially small in 𝑁 . As we will see, this has rather extreme
implications for the failure of polynomial algorithms under the low degree heuristic.

Theorem 3.6.  Let 𝛿 > 0, 𝐸 ≔ 𝛿𝑁 , and 𝑔, 𝑔′ be (1 − 𝜀)-correlated standard Normal r.v.s. Then, for any
polynomial algorithm 𝒜 with 𝐄‖𝒜(𝑔)‖2 ≤ 𝐶𝑁  and degree 𝐷 ≤ 𝑜(exp2(𝛿𝑁/2)), there exist 𝜀, 𝜂 such that

𝑝cor
solve = 𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔)) = 𝑜(1).

Proof :  Recall from (3.4) that it suffices to show that both 𝑝cor
cond and 𝑝cor

unstable vanish in the limit. Thus,
first choose 𝜂 sufficiently small, so that 2𝜂 log2(1/𝜂) < 𝛿/4; this results in 𝜂 being independent of 𝑁 .
Next, choose 𝜀 ≔ exp2(−𝛿𝑁/2). By (3.3) and Proposition 3.5, these choices give

𝑝cor
cond ≤ exp2(−𝛿𝑁 − 1

2
(−𝛿𝑁

2
) + 𝛿𝑁

4
+ 𝑂(log 𝑁)) = exp2(−𝛿𝑁

2
+ 𝑂(log 𝑁)) = 𝑜(1).

We conclude by observing that for 𝐷 ≤ 𝑜(exp2(𝛿𝑁/2)), Proposition 2.19 gives

𝑝cor
unstable ≤ 𝐶𝐷𝜀

2𝜂
≍ 𝐷𝜀

𝜂
≍ 𝐷 ⋅ exp2(−𝛿𝑁

2
) = 𝑜(1). □

Next, we consider the sublinear energy regime 𝜔(log 𝑁) ≤ 𝐸 ≤ 𝑜(𝑁). This bridges the gap from
the statistically optimal energy threshold down to the computational threshold. In particular, our
method allows us to rule out degree 𝑜(𝑁𝑂(𝑁)) polynomial algorithms even for achieving the same
energy threshold as the Karmarkar-Karp algorithm; this is expected however, as neither the original
Karmarkar-Karp algorithm nor the simplified LDM algorithm are polynomial.
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Theorem 3.7.  Let 𝜔(log 𝑁) ≤ 𝐸 ≤ 𝑜(𝑁) and 𝑔, 𝑔′ be (1 − 𝜀)-correlated standard Normal r.v.s. Then, for
any polynomial algorithm 𝒜 with 𝐄‖𝒜(𝑔)‖2 ≤ 𝐶𝑁  and degree 𝐷 ≤ 𝑜(exp2(𝐸/4)), there exist 𝜀, 𝜂 s.t.

𝑝cor
solve = 𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔)) = 𝑜(1).

Proof :  As in Theorem 3.6, it suffices to show both 𝑝cor
cond and 𝑝cor

unstable are 𝑜(1). To do this, we choose

𝜀 = exp2(−𝐸
2

), 𝜂 = 𝐸
16𝑁 log2(𝑁/𝐸)

. (3.8)

Then, simple analysis shows that for 𝐸
𝑁 ≪ 1,

𝐸
4𝑁

> 2𝜂 log2(1/𝜂).

Thus, by Proposition 3.5, we get

𝑝cor
cond ≤ exp2(−𝐸 − 1

2
log2(𝜀) + 2𝜂 log2(

1
𝜂
)𝑁 + 𝑂(log 𝑁))

≤ exp2(−𝐸 + 𝐸
4

+ 𝐸
4

+ 𝑂(log 𝑁)) = exp2(−𝐸
2

+ 𝑂(log 𝑁)) = 𝑜(1),

using that 𝐸 ≫ log 𝑁 . By Proposition 2.19, the choice of 𝐷 = 𝑜(exp2(𝐸/4)) now gives

𝑝cor
unstable ≤ 𝐶𝐷𝜀

2𝜂
≍ 𝐷𝜀𝑁 log2(𝑁/𝐸)

𝐸

= 𝐷 exp2(−𝐸/2)𝑁 log2(𝑁/𝐸)
𝐸

≤ 𝐷 exp2(−𝐸/2)𝑁 log2(𝑁)
𝐸

≤ 𝐷 exp2(−𝐸
2

+ log2(𝑁) + log2 log2(𝑁) − log2(𝐸))

≤ exp2(−𝐸
4

+ log2(𝑁) + log2 log2(𝑁) − log2(𝐸)) = 𝑜(1),

again following from 𝐸 ≫ log 𝑁 . Ergo, by (3.4), (𝑝cor
solve)

2 ≤ 𝑝cor
unstable + 𝑝cor

cond = 𝑜(1). □

Holistically, these results imply that polynomial algorithms require degree exponential in the
energy level to achieve solutions of the desired discrepancy. Under the low degree heuristic, this
corresponds to requiring double exponential time – this is clearly beaten by brute force search in
exponential time. In this case, strong low degree hardness of the NPP serves as evidence of polyno-
mial algorithms being unsuited to these types of brittle random optimization problems.

Remark 3.8 (Extending to Randomized Algorithms).  As discussed in Remark 2.20 and Remark 3.3,
if 𝒜(𝑔, 𝜔) is a randomized Σ𝑁 -valued low degree polynomial algorithm satisfying the averaged
bound 𝐄‖𝒜(𝑔, 𝜔)‖2 ≤ 𝐶𝑁 , then for every 𝜀, one can show Theorem 3.6 and Theorem 3.7 for 𝒜(−, 𝜔)
for any fixed random seed. In particular, the conditional landscape obstruction Proposition  3.5
works without change when conditioning on 𝜔 throughout. Averaging these bounds then allows
the proof to go through. We note that this extension to randomized algorithms also applies for low
coordinate degree hardness.
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3.2 Hardness for Low Coordinate Degree Algorithms
Next, let 𝒜 have coordinate degree 𝐷. We now want 𝑔, 𝑔′ to be (1 − 𝜀)-resampled standard Normal
random variables, and we define the events

𝑆diff ≔ {𝑔 ≠ 𝑔′},
𝑆solve ≔ {𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔), 𝒜(𝑔′) ∈ 𝑆(𝐸; 𝑔′)},

𝑆stable ≔ {‖𝒜(𝑔) − 𝒜(𝑔′)‖ ≤ 2√𝜂𝑁},

𝑆cond(𝑥) ≔ {∄ 𝑥′ ∈ 𝑆(𝐸; 𝑔′) such that
‖𝑥 − 𝑥′‖ ≤ 2

√
𝜂𝑁

}.

(3.9)

Note that these are the same events as (3.1), plus the event that 𝑔′ is nontrivially resampled from 𝑔.

Lemma 3.9.  For 𝑔, 𝑔′ being (1 − 𝜀)-resampled, 𝐏(𝑆diff) = 1 − (1 − 𝜀)𝑁 ≤ 𝜀𝑁 .

Proof :  This follows from the calculation

𝐏(𝑔 = 𝑔′) = ∏
𝑁

𝑖=1
𝐏(𝑔𝑖 = 𝑔𝑖′) = (1 − 𝜀)𝑁 . □

Lemma 3.10.  For 𝑥 ≔ 𝒜(𝑔), we have 𝑆diff ∩ 𝑆solve ∩ 𝑆stable ∩ 𝑆cond(𝑥) = ∅.

Proof :  This follows from Lemma 3.1, noting that the proof did not use that 𝑔 ≠ 𝑔′ almost surely. □

We can interpret this as saying 𝑆solve, 𝑆stable, 𝑆cond are all mutually exclusive, conditional on 𝑔 ≠ 𝑔′.
The previous definition of 𝑝cor

solve in (3.2), which we now term 𝑝res
solve, remains valid.

Lemma 3.11.  For 𝑔, 𝑔′ being (1 − 𝜀)-resampled, we have

𝐏(𝑆solve) = 𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔), 𝒜(𝑔′) ∈ 𝑆(𝐸; 𝑔′)) ≥ (𝑝res
solve)

2.

Proof :  Let 𝑔, 𝑔(0), 𝑔(1) be three i.i.d. copies of 𝑔, and let 𝐽  be a random subset of [𝑁], where each
coordinate is included with probability 1 − 𝜀. Then, 𝑔, 𝑔′ are jointly representable as

𝑔 = 𝑔𝐽 + 𝑔(0)
𝐽 , 𝑔′ = 𝑔𝐽 + 𝑔(1)

𝐽 .

Thus 𝑔 and 𝑔′ are conditionally independent given (𝑔, 𝐽), and the proof concludes as in Lemma 3.2.
□

Now, let us slightly redefine 𝑝res
unstable and 𝑝res

cond(𝑥) to be

𝑝res
unstable ≔ 1 − 𝐏(𝑆stable | 𝑆diff), 𝑝res

cond(𝑥) ≔ 1 − 𝐏(𝑆cond(𝑥) | 𝑆diff). (3.10)

This is necessary as when 𝑔 = 𝑔′, 𝑆stable always holds and 𝑆cond(𝑥) always fails. Note however that
if we knew that 𝐏(𝑆diff) = 1 (which is always the case for 𝑔, 𝑔′ being (1 − 𝜀)-correlated), then these
definitions agree with what we had in (3.4). Again, we can define 𝑝res

cond via (3.3).

Now, by Lemma 3.10, we know that for 𝑥 = 𝒜(𝑔), 𝐏(𝑆solve, 𝑆stable, 𝑆cond(𝑥) |𝑆diff) = 0, so

𝐏(𝑆solve|𝑆diff) + 𝐏(𝑆stable|𝑆diff) + 𝐏(𝑆cond(𝑥)|𝑆diff) ≤ 2.

Thus, rearranging and multiplying by 𝐏(𝑆diff) gives
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𝐏(𝑆solve, 𝑆diff) ≤ 𝐏(𝑆diff) ⋅ (𝑝res
unstable + 𝑝res

cond) ≤ 𝑝res
unstable + 𝑝res

cond.

Adding 𝐏(𝑆solve, 𝑆¬
diff) ≤ 1 − 𝑃(𝑆diff) (so as to apply Lemma 3.11) now lets us conclude

(𝑝res
solve)

2 ≤ 𝐏(𝑆solve) ≤ 𝑝res
unstable + 𝑝res

cond + (1 − 𝐏(𝑆diff)). (3.11)

As before, our proof follows from showing that for appropriate choices of 𝜀 and 𝜂 (depending on 𝐷,
𝐸, and 𝑁), 𝑝res

unstable and 𝑝res
cond are 𝑜(1). However, we are also required us to choose 𝜀 ≫ 1

𝑁 , so as to
ensure that 𝑔 ≠ 𝑔′, as otherwise (a) 𝑝res

cond would be too large and (b) the 1 − 𝐏(𝑆diff) term would fail
to vanish. This restriction on 𝜀 stops us from showing hardness for algorithms with degree larger
than 𝑜(𝑁), as we will see shortly.

As before, we can establish a conditional landscape obstruction for resampled instances via a
first moment computation. Here, we need to condition on the resampled instance being different,
as otherwise the probability in question can be made to be 1 if 𝑥 was chosen to solve 𝑔.

Proposition 3.12 (Fundamental Estimate – Resampled Case).  Assume that (𝑔, 𝑔′) are (1 − 𝜀)-resam-
pled standard Normal vectors. Then, for any 𝑥 such that (𝑔′, 𝑥) are conditionally independent given 𝑔,

𝑝res
cond(𝑥) = 𝐏(∃ 𝑥′ ∈ 𝑆(𝐸; 𝑔′) such that

‖𝑥 − 𝑥′‖ ≤ 2
√

𝜂𝑁
| 𝑔 ≠ 𝑔′)

≤ exp2(−𝐸 + 2𝜂 log2(
1
𝜂
)𝑁 + 𝑂(1)).

(3.12)

Proof :  We set up the proof as in Proposition 3.5. For each 𝑥′ within distance 2
√

𝜂𝑁  of 𝑥, let

𝐼𝑥′ ≔ 𝐼(𝑥′ ∈ 𝑆(𝐸; 𝑔′)) = 𝐼(|⟨𝑔′, 𝑥′⟩| ≤ 2−𝐸),

so that

𝑝res
cond(𝑥) = 𝐄

[
[[ ∑

‖𝑥−𝑥′‖≤2
√

𝜂𝑁

𝐄[𝐼𝑥′ | 𝑔, 𝑔 ≠ 𝑔′]
]
]]

= 𝐄
[
[[ ∑

‖𝑥−𝑥′‖≤2
√

𝜂𝑁

𝐏(|⟨𝑔′, 𝑥′⟩| ≤ 2−𝐸 | 𝑔, 𝑔 ≠ 𝑔′) | 𝑔 ≠ 𝑔′

]
]].

(3.13)

Again, to bound the inner probability, let 𝑔 be a Normal vector independent of 𝑔. Let 𝐽 ⊆ [𝑁] be a
random subset where each 𝑖 ∈ 𝐽  independently with probability 1 − 𝜀, so 𝑔′ can be represented as
𝑔′ = 𝑔𝐽 + 𝑔𝐽 . For a fixed 𝑥′ and conditional on (𝑔, 𝐽), we know that ⟨𝑔𝐽 , 𝑥′⟩ is 𝒩(0, 𝑁 − |𝐽|) and
⟨𝑔𝐽 , 𝑥′⟩ is deterministic. That is,

⟨𝑔′, 𝑥′⟩ | (𝑔, 𝐽) ∼ 𝒩(⟨𝑔𝐽 , 𝑥′⟩, 𝑁 − |𝐽|).

Conditioning on 𝑔 ≠ 𝑔′ is equivalent to conditioning on |𝐽 | < 𝑁 , so 𝑁 − |𝐽| ≥ 1. Thus, applying
Lemma 1.5 and integrating over all valid choices of 𝐽  gives

𝐏(|⟨𝑔′, 𝑥′⟩| ≤ 2−𝐸 | 𝑔, 𝑔 ≠ 𝑔′) ≤ exp2(−𝐸 + 𝑂(1)). (3.14)
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By Proposition 3.4, the number of terms in the sum (3.13) is bounded by exp2(2𝜂 log2(1/𝜂)𝑁), so
summing (3.14) over these terms yields (3.12). □

Note that in contrast to Proposition 3.5, this bound does not involve 𝜀 explicitly, but the condition
𝑔 ≠ 𝑔′ requires 𝜀 = 𝜔(1/𝑁) to hold almost surely, by Lemma 3.9.

With this, we can show strong low degree hardness for low coordinate degree algorithms at
linear energy levels 𝐸 = Θ(𝑁). As before, this corresponds to hardness at the statistically optimal
energy regime, but now applies to an extremely broad category of algorithms.

Theorem 3.13.  Let 𝛿 > 0, 𝐸 ≔ 𝛿𝑁 , and 𝑔, 𝑔′ be (1 − 𝜀)-resampled standard Normal r.v.s. Then, for any
algorithm 𝒜 with 𝐄‖𝒜(𝑔)‖2 ≤ 𝐶𝑁  and coordinate degree 𝐷 ≤ 𝑜(𝑁), there exist 𝜀, 𝜂 such that

𝑝res
solve = 𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔)) = 𝑜(1).

Proof :  Recall from (3.11) that it suffices to show that both 𝑝res
cond and 𝑝res

unstable vanish in the limit, while
𝐏(𝑆diff) → 1. By Lemma 3.9, the latter condition is satisfied for 𝜀 = 𝜔(1/𝑁). Thus, pick

𝜀 = log2(𝑁/𝐷)
𝑁

. (3.15)

Note that this satisfies 𝑁𝜀 = log2(𝑁/𝐷) ≫ 1 for 𝐷 = 𝑜(𝑁). Next, choose 𝜂 such that 2𝜂 log2(1/𝜂) <
𝛿/4; again, this results in 𝜂 being independent of 𝑁 . By Proposition 3.12, we get

𝑝res
cond ≤ exp2(−𝛿𝑁 + 𝛿𝑁

4
+ 𝑂(1)) = 𝑜(1).

Moreover, for 𝐷 ≤ 𝑜(𝑁), Proposition 2.19 now gives

𝑝res
unstable ≤ 𝐶𝐷𝜀

2𝜂
≍ 𝐷 ⋅ log2(𝑁/𝐷)

𝑁
= 𝑜(1).

By (3.11), we conclude that (𝑝res
solve)

2 ≤ 𝑝res
unstable + 𝑝res

cond + (1 − 𝑃(𝑆diff)) = 𝑜(1). □

Finally, combining the ideas behind Theorem 3.7 and our conditional landscape obstruction for (1 −
𝜀)-resampled Normal random variables, we can show hardness for algorithms with low coordinate
degree at sublinear energy levels, ranging from log2 𝑁 ≪ 𝐸 ≪ 𝑁 . Here we have to increase our
lower bound to log2 𝑁  as opposed to log 𝑁  from Theorem 3.7, to address the requirement that 𝜀 =
𝜔(1/𝑁), but this still enables us to “close” the statistical-to-computational gap by proving hardness
in this range. Note also that our method also allows us to derive a clear tradeoff between solution
energy and algorithm degree.

Theorem 3.14.  Let 𝜔(log2 𝑁) ≤ 𝐸 ≤ 𝑜(𝑁), and 𝑔, 𝑔′ be (1 − 𝜀)-resampled standard Normal r.v.s. Then,
for any algorithm 𝒜 with 𝐄‖𝒜(𝑔)‖2 ≤ 𝐶𝑁  and coordinate degree 𝐷 ≤ 𝑜(𝐸/ log2 𝑁), there exist 𝜀, 𝜂 s.t.

𝑝res
solve = 𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔)) = 𝑜(1).

Proof :  The strategy is the same as in Theorem 3.13. Start by choosing 𝜀 as in (3.15), so that 𝜀 = 𝜔(1/𝑁)
and 𝐏(𝑆diff) → 1. To account for 𝐸 ≤ 𝑜(𝑁), choose 𝜂 as in (3.8); this ensures 2𝜂 log2(1/𝜂) < 𝐸/4𝑁
for 𝐸 ≪ 𝑁 . By Proposition 3.12, this then guarantees that
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𝑝res
cond ≤ exp2(−𝐸 + 2𝜂 log2(

1
𝜂
)𝑁 + 𝑂(1)) ≤ exp2(−3𝐸

4
+ 𝑂(1)) = 𝑜(1).

The low coordinate degree requirement 𝐷 ≤ 𝑜(𝐸/ log2 𝑁) plus Proposition 2.19 now gives

𝑝res
unstable ≤ 𝐶𝐷𝜀

2𝜂
≍ 𝐷𝜀𝑁 log2(𝑁/𝐸)

𝐸

= 𝐷 log2(𝑁/𝐷) log2(𝑁/𝐸)
𝐸

≤ 𝐷(log2 𝑁)2

𝐸
= 𝑜(1).

We are now done by (3.11). □

Remark 3.15 (Tightness of Coordinate Degree Bounds).  For any 𝐸 ≤ Θ(𝑁), there is an easy method
to achieve a discrepancy of 2−𝐸  in 𝑒𝑂(𝐸) time.

(a) Pick a subset 𝐽 ⊆ [𝑁] of 𝐸 coordinates.
(b) Run LDM on the restricted NPP 𝑔𝐽  to find a partition 𝑥𝐽  with ⟨𝑔𝐽 , 𝑥𝐽⟩ ≤ 1.
(c) If we fix the values of 𝑥𝐽 , the NPP given by 𝑔 turns into finding 𝑥𝐽  minimizing |⟨𝑔, 𝑥⟩| =

|⟨𝑔𝐽 , 𝑥𝐽⟩ + ⟨𝑔𝐽 , 𝑥𝐽⟩|. Note here that ⟨𝑔, 𝑥⟩|(𝑔𝐽 , 𝑥𝐽) ∼ 𝒩(𝜇, 𝐸), for 𝜇 = ⟨𝑔𝐽 , 𝑥𝐽⟩.
(d) Given the statistical energy threshold is Θ(𝑁), we know 𝑔 has a solution with energy 𝐸 with

high probability. Moreover, by the proof of Lemma 1.5, the probability of any 𝑥𝐽  solving 𝑔𝐽  is
independent of 𝑂(1) constant shifts to the instance, so we can conclude that this restricted
NPP also has an energy 𝐸 solution.

(e) Thus, at this stage, we can brute force search over the remaining 𝐽  coordinates, which gives
a solution with energy 𝐸 with high probability, in 𝑒𝑂(𝐸) time.

In particular, this suggests that our results Theorem 3.13 and Theorem 3.14 are optimal under the
low degree heuristic. Namely, low degree hardness of finding solutions with energy 𝐸 holds up to
degree 𝑜(𝐸), which implies finding such solutions requires at least time 𝑒Ω̃(𝐸). This restricted brute
force strategy shows that it is indeed possible to find these solutions in time 𝑒𝑂(𝐸), implying that
our method gives the optimal energy-runtime tradeoff.

It is worthwhile asking whether the low degree heuristic is truly appropriate in our brittle setting.
For instance, in most cases where it has been applied to a random optimization problem (e.g., by
Huang and Sellke [54]), the objective under consideration has been fairly stable. However, the NPP
has a very one-dimensional landscape, lacking the “depth” which foils the low degree heuristic
for, e.g., broadcasting on trees [50]. Moreover, the sharp energy-runtime tradeoff in Remark 3.15 is
suggestive of the strength of this heuristic in this case.

As a final remark, consider that an algorithm with coordinate degree Ω(𝑁) (equivalently, Θ(𝑁))
is one which considers nonlinear interactions between some constant fraction of all the coordinates
as 𝑁  gets large. Intuitively, such an algorithm is forced to look at how a large number of instance
elements balance against each other, giving further evidence to the claim that any sufficiently local
algorithm for the NPP will be no better than random search. The good algorithms must be global,
which reflects recent developments in heuristics for computing solutions to the NPP [64], [26], [89].
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4 Extensions to Real-Valued Algorithms

In Section 3, we have established strong low degree hardness for both low degree polynomial and
low coordinate degree algorithms. However, our stability analysis assumed that the algorithms in
question were Σ𝑁 -valued. In this section, we show that this assumption is not in fact as restrictive
as it might appear.

Throughout, let 𝒜 denote a 𝐑𝑁 -valued algorithm. We want to show that:
(a) no low degree 𝒜 can reliably output points close – within constant distance – to a solution;
(b) no Σ𝑁 -valued algorithm 𝒜 coming from randomly rounding the output of 𝒜, which changes

an 𝜔(1) number of coordinates, can find a solution with nonvanishing probability.

In principle, the first possibility fails via the same analysis as in Section 3, while the second fails
because the landscape of solutions to any given NPP instance is sparse.

Why are these the only two possibilities? For 𝒜 to provide a way to actually solve the NPP, we
must be able to turn its outputs on 𝐑𝑁  into points on Σ𝑁 . If 𝒜 could output points within an
constant distance (independent of the instance) of a solution, then we could convert 𝒜 into a Σ𝑁 -
valued algorithm by manually computing the energy of all points close to its output and returning
the energy-maximizing point.

However, another common way to convert a 𝐑𝑁 -valued algorithm into a Σ𝑁 -valued one is by
rounding the outputs, as in [5], [54]. Doing this directly can lead to difficulties in performing the
stability analysis. In our case, if we know that no 𝒜 can reliably output points within constant
distance of a solution, then any rounding scheme which only flips 𝑂(1) many coordinates will
assuredly fail. Thus, the only rounding schemes worth considering must flip 𝜔(1) many coordinates.

We first show that no low degree 𝒜 can find points within constant distance of a solution,
effectively by reproducing the argument of Section  3.2. We then turn to describing a landscape
obstruction to randomized rounding, relying on what we term the solution repulsion property: solu-
tions to any NPP instance are far away from each other, with this distance tradeoff controlled by
the energy level of the solution set in consideration. This can then be leveraged to show that any
sufficiently randomized rounding scheme will always fail to find solutions at energies higher than
the computational threshold.

4.1 Hardness for Close Algorithms
Throughout this section, fix a distance 𝑟 = 𝑂(1). Consider the event that the 𝐑𝑁 -valued algorithm
𝒜 outputs a point close to a solution for an instance 𝑔:

𝑆close(𝑟) = {∃ 𝑥 ∈ 𝑆(𝐸; 𝑔) s.t.
𝒜(𝑔) ∈ 𝐵(𝑥, 𝑟)

} = {𝐵(𝒜(𝑔), 𝑟) ∩ 𝑆(𝐸; 𝑔) ≠ ∅}.
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Note that since 𝑟 is of constant order, we can convert 𝒜 into a Σ𝑁 -valued algorithm by first rounding
the 𝒜(𝑔) into the solid binary hypercube and then picking the best corner of Σ𝑁  within constant
distance of this output.

Let 𝖼𝗎𝖻𝖾:  𝐑𝑁 → [−1, 1]𝑁  be the function which rounds 𝑥 ∈ 𝐑𝑁  into the cube [−1, 1]𝑁 :

𝖼𝗎𝖻𝖾(𝑥)𝑖 =
{{
{
{{−1 𝑥𝑖 ≤ −1,

𝑥𝑖 − 1 < 𝑥𝑖 < 1,
1 𝑥𝑖 ≥ 1.

Note that 𝖼𝗎𝖻𝖾 is 1-Lipschitz with respect to the Euclidean norm.

Definition 4.1.  Let 𝑟 > 0 and 𝒜 be an algorithm. Define the [−1, 1]𝑁 -valued algorithm 𝒜𝑟  by

𝒜𝑟(𝑔) ≔ argmin
𝑥′∈𝐵(𝖼𝗎𝖻𝖾(𝒜(𝑔)),𝑟)∩Σ𝑁

|⟨𝑔, 𝑥′⟩|. (4.1)

If 𝐵(𝖼𝗎𝖻𝖾(𝒜(𝑔)), 𝑟) ∩ Σ𝑁 = ∅, then set 𝒜𝑟(𝑔) ≔ 𝖼𝗎𝖻𝖾(𝒜(𝑔)), which is necessarily not in Σ𝑁 .

Observe that 𝑆close(𝑟) occurring implies 𝒜𝑟  finds a solution for 𝑔. In addition, computing 𝒜𝑟  in
practice requires additionally calculating the energy of 𝑂(1)-many points on Σ𝑁 . This requires only
an additional 𝑂(𝑁) operations.

Recall from Section 2.3 that if 𝒜 has low polynomial or coordinate degree, then we can derive
useful stability bounds for its outputs. Adjusting the bounds, this modification 𝒜𝑟  of 𝒜 is also stable.

Lemma 4.2.  Suppose that 𝐄‖𝒜(𝑔)‖2 ≤ 𝐶𝑁  and 𝒜 has degree ≤ 𝐷 (resp. coordinate degree ≤ 𝐷). Let
(𝑔, 𝑔′) be (1 − 𝜀)-correlated (resp. (1 − 𝜀)-resampled). Then, 𝒜𝑟  as defined above satisfies

𝐄‖𝒜𝑟(𝑔) − 𝒜𝑟(𝑔′)‖
2

≤ 4𝐶𝐷𝜀𝑁 + 8𝑟2. (4.2)

In particular,

𝐏(‖𝒜𝑟(𝑔) − 𝒜𝑟(𝑔′)‖ ≥ 2√𝜂𝑁) ≤ 𝐶𝐷𝜀
𝜂

+ 2𝑟2

𝜂𝑁
. (4.3)

Proof :  Observe that by the triangle inequality, ‖𝒜𝑟(𝑔) − 𝒜𝑟(𝑔′)‖ is bounded by

‖𝒜𝑟(𝑔) − 𝖼𝗎𝖻𝖾(𝒜(𝑔))‖ + ‖𝖼𝗎𝖻𝖾(𝒜(𝑔)) − 𝖼𝗎𝖻𝖾(𝒜(𝑔′))‖ + ‖𝖼𝗎𝖻𝖾(𝒜(𝑔′)) − 𝒜𝑟(𝑔′)‖

≤ 2𝑟 + ‖𝒜(𝑔) − 𝒜(𝑔′)‖.

This follows as 𝖼𝗎𝖻𝖾 is 1-Lipschitz and the corner-picking step in (4.1) only moves 𝒜𝑟(𝑔) from
𝖼𝗎𝖻𝖾(𝒜(𝑟)) by at most 𝑟. By Jensen’s inequality, squaring this gives

‖𝒜𝑟(𝑔) − 𝒜𝑟(𝑔′)‖
2

≤ 2(4𝑟2 + ‖𝒜(𝑔) − 𝒜(𝑔′)‖2).

Combining this with Proposition 2.19 gives (4.2), and (4.3) follows from Markov’s inequality. □

Of course, our construction of 𝒜𝑟  is certainly never polynomial and does not preserve coordinate
degree in a controllable way. Thus, we cannot directly hope for Theorem  3.6, Theorem  3.7,
Theorem 3.13, or Theorem 3.14 to hold. However, because this rounding does not drastically alter the
stability analysis, we are still able to show that for any 𝐑𝑁 -valued low coordinate degree algorithm

31



𝒜 and 𝑟 = 𝑂(1), strong low degree hardness holds for 𝒜𝑟. The same argument proves hardness
when 𝒜 is a low degree polynomial algorithm; this is omitted for brevity.

We recall the setup from Section 3.2. Let 𝑔, 𝑔′ be (1 − 𝜀)-resampled standard Normal vectors and
define the events

𝑆diff ≔ {𝑔 ≠ 𝑔′},

𝑆solve ≔ {𝒜𝑟(𝑔) ∈ 𝑆(𝐸; 𝑔), 𝒜𝑟(𝑔′) ∈ 𝑆(𝐸; 𝑔′)},

𝑆stable ≔ {‖𝒜𝑟(𝑔) − 𝒜𝑟(𝑔′)‖ ≤ 2√𝜂𝑁},

𝑆cond(𝑥) ≔ {∄ 𝑥′ ∈ 𝑆(𝐸; 𝑔′) such that
‖𝑥 − 𝑥′‖ ≤ 2

√
𝜂𝑁

}.

(4.4)

These are the same events as in (3.9), just adapted to 𝒜𝑟. In particular, Lemma 3.10 holds unchanged.

Moreover, we define

𝑝cor
solve ≔ 𝐏(𝒜𝑟(𝑔) ∈ 𝑆(𝐸; 𝑔)) ≥ 𝐏(𝑆close(𝑟)), (4.5)

𝑝cor
unstable ≔ 1 − 𝐏(𝑆stable | 𝑆diff), 𝑝cor

cond(𝑥) ≔ 1 − 𝐏(𝑆cond(𝑥) | 𝑆diff),

along with 𝑝cor
cond ≔ max𝑥∈Σ𝑁

𝑝cor
cond(𝑥), echoing (3.10). Observe that since 𝑝cor

cond makes no reference to
any algorithm, the bound in Proposition 3.12 holds without change. Moreover, Lemma 4.2 lets us
control 𝑝cor

unstable. The final piece needed is an appropriate analog of Lemma 3.11.

Lemma 4.3.  For 𝑔, 𝑔′ being (1 − 𝜀)-resampled, we have

𝐏(𝑆solve) = 𝐏(𝒜𝑟(𝑔) ∈ 𝑆(𝐸; 𝑔), 𝒜𝑟(𝑔′) ∈ 𝑆(𝐸; 𝑔′)) ≥ (𝑝cor
solve)

2.

Proof :  Observe that, letting + denote Minkowski sum, we have

{𝒜𝑟(𝑔) ∈ 𝑆(𝐸; 𝑔)} = {𝖼𝗎𝖻𝖾(𝒜(𝑔)) ∈ 𝑆(𝐸; 𝑔) + 𝐵(0, 𝑟)}.

Expanding 𝑆(𝐸; 𝑔), the proof proceeds as in Lemma 3.11. □

Theorem 4.4.  Let 𝜔(log2 𝑁) ≤ 𝐸 ≤ Θ(𝑁), and let 𝑔, 𝑔′ be (1 − 𝜀)-resampled standard Normal r.v.s.
Consider any 𝑟 = 𝑂(1) and 𝐑𝑁 -valued 𝒜 with 𝐄‖𝒜(𝑔)‖2 ≤ 𝐶𝑁 , and assume in addition that

(a) if 𝐸 = 𝛿𝑁 = Θ(𝑁) for 𝛿 > 0, then 𝒜 has coordinate degree 𝐷 ≤ 𝑜(𝑁);
(b) if log2 𝑁 ≪ 𝐸 ≪ 𝑁 , then 𝒜 has coordinate degree 𝐷 ≤ 𝑜(𝐸/ log2 𝑁).

Let 𝒜𝑟  be as in Definition 4.1. Then there exist 𝜀, 𝜂 > 0 such that

𝑝cor
solve = 𝐏(𝒜𝑟(𝑔) ∈ 𝑆(𝐸; 𝑔)) = 𝑜(1).

Proof :  First, by Lemma 3.10, the appropriate adjustment of (3.11) holds, namely that

(𝑝cor
solve)

2 ≤ 𝑝cor
unstable + 𝑝cor

cond + (1 − 𝐏(𝑆diff)). (4.6)

To ensure 𝐏(𝑆diff) → 1, we begin by following (3.15) and choosing 𝜀 = log2(𝑁/𝐷)/𝑁 . Moreover,
following the proof of Theorem 3.13 and Theorem 3.14, we know that choosing
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𝜂 = {
𝑂(1) s.t. 2𝜂 log2(1/𝜂) < 𝛿/4 𝐸 = 𝛿𝑁,

𝐸
16𝑁 log2(𝑁/𝐸) 𝐸 ≤ 𝑜(𝑁),

in conjunction with Proposition 3.12, guarantees that

𝑝cor
cond ≤ exp2(−3𝐸

4
+ 𝑂(1)) = 𝑜(1).

Finally, note that in the linear case, when 𝜂 = 𝑂(1), we trivially have 𝑟2

𝜂𝑁 = 𝑜(1). In the sublinear
case, for 𝜂 = 𝐸/(16𝑁 log2(𝑁/𝐸)), we instead get

𝜂𝑁 = 𝐸
16 log2(𝑁/𝐸)

≥ 𝐸
16 log2 𝑁

= 𝜔(1),

since 𝐸 ≫ log2 𝑁 . Thus, applying the properly modified Lemma 4.2 with these choices of 𝜀 and 𝜂,
we see that 𝑝cor

unstable = 𝑜(1). By (4.6), we conclude that 𝑝cor
solve = 𝑜(1). □

Note that as 𝑝cor
solve upper bounds 𝐏(𝑆close(𝑟)), this argument shows algorithmic hardness for low

degree 𝐑𝑁 -valued algorithms aiming to output points within constant distance of a solution.

4.2 Truly Random Rounding
While deterministic algorithms fail to get close to NPP solutions, perhaps a randomized rounding
scheme could work instead. As discussed above, the failure of algorithms finding outputs within a
constant distance of a solution motivates considering rounding schemes which are “truly random,”
in that they change a superconstant number of coordinates. However, this approach is blunted by
the same brittleness of the NPP landscape that established the conditional obstruction of Proposi-
tion 3.5 and Proposition 3.12. In particular, Theorem 4.8 shows that if one has a subcube of Σ𝑁  with
dimension growing slowly with 𝑁 , then at most only one of those points will be a solution.

For this section, again let 𝒜 be a deterministic 𝐑𝑁 -valued algorithm. Moreover, assume we are
searching for solutions with energy between log2 𝑁 ≪ 𝐸 ≤ 𝑁 ; note that for lower values, the Kar-
markar-Karp algorithm can already achieve discrepancies of 𝑁−Θ(log 𝑁) energy in polynomial time.

To start, for any 𝑥 ∈ 𝐑𝑁 , we write 𝑥∗ for the coordinate-wise signs of 𝑥, i.e.,

𝑥∗
𝑖 ≔ {

+1 𝑥𝑖 > 0,
−1 𝑥𝑖 ≤ 0.

We can then define the deterministically rounded algorithm 𝒜∗(𝑔) ≔ 𝒜(𝑔)∗.

Remark 4.5.  Observe that if 𝒜 was a low coordinate degree algorithm, then 𝒜∗ has the same
coordinate degree, so strong low degree hardness as proved in Section 3.2 still applies. On the other
hand, if 𝒜 was a low polynomial degree algorithm, then 𝒜∗ will not be polynomial, but as coordinate
degree bounds polynomial degree, we can recover strong low degree hardness, albeit with worse
bounds on 𝐷.

In contrast to deterministically rounding of the outputs of 𝒜 by taking signs, we can consider
passing the output of 𝒜 through a randomized rounding scheme. Let 𝗋𝗈𝗎𝗇𝖽(𝑥, 𝜔):  𝐑𝑁 × Ω → Σ𝑁
denote any randomized rounding function, with randomness 𝜔 independent of the input. We will
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often suppress the 𝜔 in the notation, and treat 𝗋𝗈𝗎𝗇𝖽(𝑥) as a Σ𝑁 -valued random variable. We can
describe such a randomized rounding function in the following way. Define 𝑝1(𝑥), …, 𝑝𝑁(𝑥) by

𝑝𝑖(𝑥) ≔ max(𝐏(𝗋𝗈𝗎𝗇𝖽(𝑥)𝑖 ≠ 𝑥∗
𝑖 ),

1
2
). (4.7)

We need to guarantee that each 𝑝𝑖(𝑥) ≤ 1/2 for the following alternative description of 𝗋𝗈𝗎𝗇𝖽(𝑥).

Lemma 4.6.  Fix 𝑥 ∈ 𝐑𝑁 . Draw 𝑁  coin flips 𝐼𝑥,𝑖 ∼ Bern(2𝑝𝑖(𝑥)) as well as 𝑁  signs 𝑆𝑖 ∼ Unif{±1}, all
mutually independent; define the random variable 𝑥̃ ∈ Σ𝑁  by

𝑥̃𝑖 ≔ 𝑆𝑖𝐼𝑥,𝑖 + (1 − 𝐼𝑥,𝑖)𝑥∗
𝑖 .

Then 𝑥̃ ∼ 𝗋𝗈𝗎𝗇𝖽(𝑥).

Proof :  Conditioning on 𝐼𝑥,𝑖, we can check that

𝐏(𝑥̃𝑖 ≠ 𝑥𝑖) = 2𝑝𝑖(𝑥) ⋅ 𝐏(𝑥̃𝑖 = 𝑥𝑖 | 𝐼𝑥,𝑖 = 1) + (1 − 2𝑝𝑖(𝑥)) ⋅ 𝐏(𝑥̃𝑖 ≠ 𝑥𝑖 | 𝐼𝑥,𝑖 = 0) = 𝑝𝑖(𝑥).

Thus, 𝐏(𝑥̃𝑖 = 𝑥∗
𝑖 ) = 𝐏(𝗋𝗈𝗎𝗇𝖽(𝑥)𝑖 = 𝑥∗

𝑖 ). □

By Lemma 4.6, we can redefine 𝗋𝗈𝗎𝗇𝖽(𝑥) to be 𝑥̃ as constructed above without loss of generality.

It thus makes sense to define 𝒜(𝑔) ≔ 𝗋𝗈𝗎𝗇𝖽(𝒜(𝑔)), which is now (a) Σ𝑁 -valued and (b)
randomized only in the transition from 𝐑𝑁  to Σ𝑁  (i.e., the rounding does not depend directly on
𝑔, but only on the output 𝑥 = 𝒜(𝑔)). We should expect that if 𝒜 = 𝒜∗ (e.g., if 𝒜 outputs values far
outside the cube [−1, 1]𝑁 ) with high probability, then low degree hardness will still apply, since
𝒜∗ is deterministic. However, in general, any 𝒜 which differs from 𝒜∗ will fail to solve 𝑔 with high
probability. This is independent of any assumptions on 𝒜: any rounding scheme will introduce so
much randomness that 𝑥̃ will effectively be a random point, which has a vanishing probability of
being a solution because of how sparse and disconnected the NPP landscape is.

To see this, we first show that any randomized rounding scheme as in Lemma 4.6 which differs
almost surely from simply picking the signs will resample a diverging number of coordinates.

Lemma 4.7.  Fix 𝑥 ∈ 𝐑𝑁 , and let 𝑝1(𝑥), …, 𝑝𝑁(𝑥) be defined as in (4.7). Then 𝑥̃ ≠ 𝑥∗ with high proba-
bility if and only if ∑𝑖 𝑝𝑖(𝑥) = 𝜔(1). Moreover, assuming that ∑𝑖 𝑝𝑖(𝑥) = 𝜔(1), the number of coordinates
in which 𝑥̃ is resampled diverges almost surely.

Proof :  Recall that for 𝑥 ∈ [0, 1/2], log2(1 − 𝑥) = Θ(𝑥). Thus, as each coordinate of 𝑥 is rounded
independently, we can compute

𝐏(𝑥̃ = 𝑥∗) = ∏
𝑖

(1 − 𝑝𝑖(𝑥)) = exp2(∑
𝑖

log2(1 − 𝑝𝑖(𝑥))) ≤ exp2(−Θ(∑
𝑖

𝑝𝑖(𝑥))).

Thus, 𝐏(𝑥̃ = 𝑥∗) = 𝑜(1) if and only if ∑𝑖 𝑝𝑖(𝑥) = 𝜔(1).

Next, following the construction of 𝑥̃ in Lemma  4.6, let 𝐸𝑖 = {𝐼𝑥,𝑖 = 1} be the event that 𝑥̃𝑖
is resampled from Unif{±1}, independently of 𝑥∗

𝑖 . The 𝐸𝑖 are independent, so by Borel-Cantelli,
∑𝑖 𝐏(𝐸𝑖) = 2 ∑𝑖 𝑝𝑖(𝑥) = 𝜔(1) implies that 𝑥̃𝑖 is resampled infinitely often with probability 1. □
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To take advantage of the above construction, we show Theorem 4.8: this is a landscape obstruction
for single instances of the NPP which shows that solutions resist clustering at a rate related to their
energy level (i.e., higher energy solutions push each other further apart). This will let us conclude
that any 𝒜 which is not equal to 𝒜∗ with high probability fails to find solutions.

Theorem 4.8 (Solutions Repel).  Consider any distances 𝑘 = Ω(1) and energy levels 𝐸 ≫ 𝑘 log 𝑁 . With
high probability, there are no pairs of distinct solutions 𝑥, 𝑥′ ∈ 𝑆(𝐸; 𝑔) to an instance 𝑔 with ‖𝑥 − 𝑥′‖ ≤
2
√

𝑘 (i.e., within 𝑘 sign flips of each other):

𝐏(∃ (𝑥, 𝑥′) ∈ 𝑆(𝐸; 𝑔) s.t.
‖𝑥 − 𝑥′‖ ≤ 2

√
𝑘.

) ≤ exp2(−𝐸 + 𝑂(𝑘 log 𝑁)) = 𝑜(1). (4.8)

Proof :  Consider any 𝑥 ≠ 𝑥′, and let 𝐽 ⊆ [𝑁] denote the coordinates in which 𝑥, 𝑥′ differ. Then

𝑥 = 𝑥𝐽 + 𝑥𝐽 , 𝑥′ = 𝑥𝐽 − 𝑥𝐽 .

Assuming both 𝑥, 𝑥′ ∈ 𝑆(𝐸; 𝑔), we can expand the inequalities −2−𝐸 ≤ ⟨𝑔, 𝑥⟩, ⟨𝑔, 𝑥′⟩ ≤ 2−𝐸  into

−2−𝐸 ≤ ⟨𝑔, 𝑥𝐽⟩ + ⟨𝑔, 𝑥𝐽⟩ ≤ 2−𝐸,

−2−𝐸 ≤ ⟨𝑔, 𝑥𝐽⟩ − ⟨𝑔, 𝑥𝐽⟩ ≤ 2−𝐸.

Multiplying the lower equation by −1 and adding the resulting inequalities gives |⟨𝑔, 𝑥𝐽⟩| ≤ 2−𝐸 .

Thus, finding pairs of distinct solutions within distance 2
√

𝑘 implies finding a subset 𝐽 ⊆ [𝑁] of
at most 𝑘 coordinates and |𝐽 | signs 𝑥𝐽  such that |⟨𝑔𝐽 , 𝑥𝐽⟩| ≤ 2−𝐸 . By [95, Exer. 0.0.5], there are

∑
1≤𝑘′≤𝑘

(𝑁
𝑘′ ) ≤ (𝑒𝑁

𝑘
)

𝑘

≤ (𝑒𝑁)𝑘 = 2𝑂(𝑘 log 𝑁)

choices of such subsets, and at most 2𝑘 choices of signs. Now, ⟨𝑔𝐽 , 𝑥𝐽⟩ ∼ 𝒩(0, |𝐽|), and as |𝐽 | ≥
1, Lemma  1.5 and the following remark implies 𝐏(|⟨𝑔𝐽 , 𝑥𝐽⟩| ≤ 2−𝐸) ≤ exp2(−𝐸 + 𝑂(1)). Union
bounding this over the 2𝑂(𝑘 log 𝑁) possibilities gives (4.8). □

Here, our technique of converting pairs of solutions into subvectors of 𝑔 which must have small sum
enables us to reduce the size of the set we union bound over from 2𝑂(𝑁) to 2𝑂(𝑘 log 𝑁). Moreover,
observe that this proof can be adapted to show that for a fixed 𝑥 ∈ 𝑆(𝐸; 𝑔), there are no other
solutions within 𝑘 sign flips with high probability.

Finally, we exhibit strong hardness for truly randomized algorithms. Roughly, this holds because
if enough coordinates are resampled, the resulting point is random within a subcube of dimension
growing slowly with Σ𝑁 , which overwhelms the brittleness in Theorem 4.8.

Theorem 4.9.  Let 𝑥 = 𝒜(𝑔), and define 𝑥∗, 𝑥̃, etc., as previously. Moreover, assume that for any 𝑥 in the
possible outputs of 𝒜, we have ∑𝑖 𝑝𝑖(𝑥) = 𝜔(1). Then, for any 𝐸 ≥ 𝜔(log2 𝑁), we have

𝐏(𝒜(𝑔) ∈ 𝑆(𝐸; 𝑔)) = 𝐏(𝑥̃ ∈ 𝑆(𝐸; 𝑔)) ≤ 𝑜(1).

Proof :  Following the characterization of 𝑥̃ in Lemma  4.6, let 𝐾 ≔ max(log2 𝑁, ∑𝑖 𝐼𝑥,𝑖). By the
assumptions on ∑𝑖 𝑝𝑖(𝑥) and Lemma 4.7, we know 𝐾, which is at least the number of coordinates
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which are resampled, is bounded as 1 ≪ 𝐾 ≤ log2 𝑁 , for any possible 𝑥 = 𝒜(𝑔). Now, let 𝐽 ⊆ [𝑁]
denote the set of the first 𝐾  coordinates to be resampled, so that 𝐾 = |𝐽|, and consider

𝐏(𝑥̃ ∈ 𝑆(𝐸; 𝑔) | 𝑥̃𝐽),

where we fix the coordinates outside of 𝐽  and let 𝑥̃ be uniformly sampled from a 𝐾-dimensional
subcube of Σ𝑁 . All such 𝑥̃ are within distance 2

√
𝐾  of each other, so by Theorem 4.8, the probability

that there is more than one such 𝑥̃ ∈ 𝑆(𝐸; 𝑔) is bounded by

exp2(−𝐸 + 𝑂(𝐾 log 𝑁)) ≤ exp2(−𝐸 + 𝑂(log2 𝑁)) = 𝑜(1),

by assumption on 𝐸. Thus, the probability that any of the 𝑥̃ is in 𝑆(𝐸; 𝑔) is bounded by 2−𝐾 , whence

𝐏(𝑥̃ ∈ 𝑆(𝐸; 𝑔)) = 𝐄[𝐏(𝑥̃ ∈ 𝑆(𝐸; 𝑔) | 𝑥̃𝐽)] ≤ 2−𝐾 ≤ 𝑜(1). □

While this rules out many possible randomized rounding schemes, there is still the potential for
rounding in a way that depends on both 𝑔 and 𝑥 to find solutions with nonvanishing probability.
More generally, recent work by Li and Schramm has pointed out that the presence of an OGP or
a conditional landscape obstruction is itself evidence of the brittleness of a random optimization
problem [77]. Thus, stable algorithms (e.g., Lipschitz, smooth, etc.) are intrinsically ill-suited for
such tasks. In light of this, low (coordinate) degree algorithms, which can be stable but are not
required to be continuous or smooth, provide better intrinsic models. Given that, new approaches
on algorithms for the NPP could focus on non-stable algorithms, such as linear or semidefinite
programming. We invite these as interesting directions for potential future work.
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